Spaces:
Runtime error
Runtime error
tc-ha
commited on
Commit
·
5c9bf40
1
Parent(s):
51dfab7
add requirement
Browse files- app.py +90 -90
- requirements.txt +9 -9
app.py
CHANGED
@@ -1,122 +1,122 @@
|
|
1 |
-
import streamlit as st
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x * x)
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
#
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
#
|
105 |
-
|
106 |
-
#
|
107 |
-
#
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
#
|
114 |
-
|
115 |
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
|
122 |
|
|
|
1 |
+
# import streamlit as st
|
2 |
|
3 |
+
# x = st.slider('Select a value')
|
4 |
+
# st.write(x, 'squared is', x * x)
|
5 |
|
6 |
+
import streamlit as st
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
import json
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from transformers import AutoModelForQuestionAnswering, LayoutLMv2Processor, AutoTokenizer
|
13 |
+
|
14 |
+
class Config():
|
15 |
+
def __init__(self):
|
16 |
+
self.data_dir = "/opt/ml/input/data/"
|
17 |
+
self.model = "layoutlmv2"
|
18 |
+
self.device = "cpu"
|
19 |
+
self.checkpoint = "microsoft/layoutlmv2-base-uncased"
|
20 |
+
self.use_ocr_library = False
|
21 |
+
self.debug = False
|
22 |
+
self.batch_data = 1
|
23 |
+
self.num_proc = 1
|
24 |
+
self.shuffle = True
|
25 |
|
26 |
+
self.lr = 5e-6
|
27 |
+
self.seed = 42
|
28 |
+
self.batch = 1
|
29 |
+
self.max_len = 512
|
30 |
+
self.epochs = 1000
|
31 |
|
32 |
+
self.fuzzy = False
|
33 |
+
self.model_name = ''
|
34 |
|
35 |
+
config = Config()
|
36 |
|
37 |
+
def predict_start_first(outputs):
|
38 |
+
start_logits = outputs.start_logits
|
39 |
+
end_logits = outputs.end_logits
|
40 |
|
41 |
+
predicted_start_idx_list = []
|
42 |
+
predicted_end_idx_list = []
|
43 |
|
44 |
+
start_position = start_logits.argmax(1)
|
45 |
|
46 |
+
for i in range(len(start_logits)):
|
47 |
|
48 |
+
start = start_position[i]
|
49 |
+
predicted_start_idx_list.append(start)
|
50 |
+
max_score = -float('inf')
|
51 |
+
predicted_end_idx = 0
|
52 |
|
53 |
+
for end in range(start, len(end_logits[i])):
|
54 |
+
score = end_logits[i][end]
|
55 |
+
if score > max_score:
|
56 |
+
max_score = score
|
57 |
+
predicted_end_idx = end
|
58 |
|
59 |
+
predicted_end_idx_list.append(predicted_end_idx)
|
60 |
|
61 |
+
return predicted_start_idx_list, predicted_end_idx_list
|
62 |
|
63 |
+
# Define function to make predictions
|
64 |
+
def predict(config, model, image, question):
|
65 |
|
66 |
+
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
67 |
+
encoding = processor(image, question, return_tensors="pt")
|
68 |
|
69 |
+
# model
|
70 |
+
with torch.no_grad():
|
71 |
+
output = model(
|
72 |
+
input_ids=encoding['input_ids'],
|
73 |
+
attention_mask=encoding['attention_mask'],
|
74 |
+
token_type_ids=encoding['token_type_ids'],
|
75 |
+
bbox=encoding['bbox'], image=encoding['image']
|
76 |
+
)
|
77 |
|
78 |
+
predicted_start_idx, predicted_end_idx = predict_start_first(output)
|
79 |
|
80 |
+
answer = processor.tokenizer.decode(encoding['input_ids'][0, predicted_start_idx[0]:predicted_end_idx[0]+1])
|
81 |
|
82 |
+
return answer
|
83 |
|
84 |
+
def main(config):
|
85 |
|
86 |
+
# Load deep learning model
|
87 |
+
checkpoint = ''
|
88 |
+
model = AutoModelForQuestionAnswering.from_pretrained('microsoft/layoutlmv2-base-uncased').to(config.device)
|
89 |
+
# model.load_state_dict(torch.load("model"))
|
90 |
|
91 |
+
# Create Streamlit app
|
92 |
+
st.title('Deep Learning Pipeline')
|
93 |
+
st.write('Upload an image and ask a question to get a prediction')
|
94 |
|
95 |
+
# Create file uploader and text input widgets
|
96 |
+
uploaded_file = st.file_uploader("Choose an image", type=['jpg', 'jpeg', 'png'])
|
97 |
+
question = st.text_input('Ask a question')
|
98 |
|
99 |
+
# If file is uploaded, show the image
|
100 |
+
if uploaded_file is not None:
|
101 |
+
image = Image.open(uploaded_file).convert("RGB")
|
102 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
103 |
|
104 |
+
# If question is asked and file is uploaded, make a prediction
|
105 |
+
if st.button('Get Prediction') and uploaded_file is not None and question != '':
|
106 |
+
# Preprocess the image and question as needed
|
107 |
+
# ...
|
108 |
|
109 |
+
# Make the prediction
|
110 |
+
with st.spinner('Predicting...'):
|
111 |
+
output = predict(config, model, image, question)
|
112 |
|
113 |
+
# Show the output
|
114 |
+
st.write('Output:', output)
|
115 |
|
116 |
|
117 |
+
if __name__ == '__main__':
|
118 |
+
config = Config()
|
119 |
+
main(config)
|
120 |
|
121 |
|
122 |
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
1 |
+
datasets
|
2 |
+
editdistance
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
Pillow
|
6 |
+
torch
|
7 |
+
tqdm
|
8 |
+
transformers
|
9 |
+
thefuzz
|