BlinkDL commited on
Commit
3bcbfb1
1 Parent(s): 1d5e556

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -8
app.py CHANGED
@@ -44,19 +44,60 @@ def evaluate(
44
  token_count=200,
45
  temperature=1.0,
46
  top_p=0.7,
47
- **kwargs,
 
48
  ):
49
- prompt = generate_prompt(instruction, input)
50
- return prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  g = gr.Interface(
53
  fn=evaluate,
54
  inputs=[
55
  gr.components.Textbox(lines=2, label="Instruction", value="Tell me about alpacas."),
56
  gr.components.Textbox(lines=2, label="Input", placeholder="none"),
57
- gr.components.Slider(minimum=10, maximum=250, step=10, value=200),
58
- gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0),
59
- gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.7),
 
 
60
  ],
61
  outputs=[
62
  gr.inputs.Textbox(
@@ -64,8 +105,8 @@ g = gr.Interface(
64
  label="Output",
65
  )
66
  ],
67
- title="🐦Raven-RWKV 7B",
68
- description="Raven-RWKV 7B is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and more.",
69
  )
70
  g.queue(concurrency_count=1, max_size=10)
71
  g.launch(share=False)
 
44
  token_count=200,
45
  temperature=1.0,
46
  top_p=0.7,
47
+ presencePenalty = 0.1,
48
+ countPenalty = 0.1,
49
  ):
50
+ args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
51
+ alpha_frequency = countPenalty,
52
+ alpha_presence = presencePenalty,
53
+ token_ban = [], # ban the generation of some tokens
54
+ token_stop = [0]) # stop generation whenever you see any token here
55
+
56
+ instruction = instruction.strip()
57
+ input = input.strip()
58
+ ctx = generate_prompt(instruction, input)
59
+
60
+ gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
61
+ print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
62
+
63
+ all_tokens = []
64
+ out_last = 0
65
+ out_str = ''
66
+ occurrence = {}
67
+ state = None
68
+ for i in range(int(token_count)):
69
+ out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
70
+ for n in occurrence:
71
+ out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
72
+
73
+ token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
74
+ if token in args.token_stop:
75
+ break
76
+ all_tokens += [token]
77
+ if token not in occurrence:
78
+ occurrence[token] = 1
79
+ else:
80
+ occurrence[token] += 1
81
+
82
+ tmp = pipeline.decode(all_tokens[out_last:])
83
+ if '\ufffd' not in tmp:
84
+ out_str += tmp
85
+ yield out_str.strip()
86
+ out_last = i + 1
87
+ gc.collect()
88
+ torch.cuda.empty_cache()
89
+ yield out_str.strip()
90
 
91
  g = gr.Interface(
92
  fn=evaluate,
93
  inputs=[
94
  gr.components.Textbox(lines=2, label="Instruction", value="Tell me about alpacas."),
95
  gr.components.Textbox(lines=2, label="Input", placeholder="none"),
96
+ gr.components.Slider(minimum=10, maximum=250, step=10, value=200), # token_count
97
+ gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature
98
+ gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.7), # top_p
99
+ gr.components.Slider(0.0, 1.0, step=0.1, value=0.2), # presencePenalty
100
+ gr.components.Slider(0.0, 1.0, step=0.1, value=0.2), # countPenalty
101
  ],
102
  outputs=[
103
  gr.inputs.Textbox(
 
105
  label="Output",
106
  )
107
  ],
108
+ title=f"🐦Raven {title}",
109
+ description="Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and more.",
110
  )
111
  g.queue(concurrency_count=1, max_size=10)
112
  g.launch(share=False)