Spaces:
Runtime error
Runtime error
# https://atlas.nomic.ai/data/derek2/boru-subreddit-neural-search/map | |
import os | |
import re | |
import time | |
import markdown | |
import nomic | |
import numpy as np | |
import pandas as pd | |
from nomic import atlas | |
from nomic.dataset import AtlasClass | |
from nomic.data_inference import NomicTopicOptions | |
from src.my_logger import setup_logger | |
NOMIC_KEY = os.getenv('NOMIC_KEY') | |
nomic.login(NOMIC_KEY) | |
sleep_time = int(os.getenv('NOMIC_SLEEP_TIME', 60)) | |
logger = setup_logger(__name__) | |
# Regex to extract subreddit | |
subreddit_re = re.compile(r'[^e]r/(\w+)') | |
def count_words(text): | |
words = text.split() | |
return len(words) | |
def preprocess_markdown(text): | |
# Inline CSS for spoilers | |
spoiler_style = 'background-color: black; color: black;' | |
hover_style = 'color: inherit;' # Assuming you want the text to be visible on hover | |
# Replace Reddit spoiler tags with an HTML span with inline styles | |
text = re.sub( | |
r'\>\!(.*?)\!\<', | |
r'<span class="spoiler" style="' + spoiler_style + '" onmouseover="this.style.color=\'' + hover_style + '\'" onmouseout="this.style.color=\'black\'">\1</span>', | |
text | |
) | |
return text | |
def convert_markdown_to_html(text): | |
processed_text = preprocess_markdown(text) | |
html = markdown.markdown(processed_text, extensions=['mdx_linkify']) | |
return html | |
def extract_subreddit(text): | |
match = subreddit_re.search(text) | |
if match: | |
return 'r/' + match.group(1) | |
return '' | |
def delete_old_nomic(): | |
logger.info(f"Trying to delete old version of nomic Atlas...") | |
try: | |
ac = AtlasClass() | |
atlas_id = ac._get_dataset_by_slug_identifier("derek2/boru-subreddit-neural-search")['id'] | |
ac._delete_project_by_id(atlas_id) | |
logger.info(f"Succeeded in deleting old version of nomic Atlas.") | |
# Get sleep time from environment variable | |
logger.info(f"Sleeping for {sleep_time}s to wait for old version deletion on the server-side") | |
time.sleep(sleep_time) | |
except Exception as e: | |
logger.info(f"Failed to delete old version of nomic Atlas. Error: {e}") | |
def preprocess_markdown(text): | |
# Inline CSS for spoilers | |
spoiler_style = 'background-color: black; color: black;' | |
hover_style = 'color: inherit;' # Assuming you want the text to be visible on hover | |
# Replace Reddit spoiler tags >!spoiler!< with an HTML span with inline styles | |
text = re.sub( | |
r'\>\!(.*?)\<\!', | |
r'<span class="spoiler" style="' + spoiler_style + '" onmouseover="this.style.color=\'' + hover_style + '\'" onmouseout="this.style.color=\'black\'">\1</span>', | |
text | |
) | |
return text | |
def build_nomic(dataset): | |
df = dataset['train'].to_pandas() | |
non_embedding_columns = ['date_utc', 'title', 'flair', 'poster', 'url', 'id', 'word_count', | |
'score', 'score_percentile', 'html_content', 'subreddit'] | |
# Calculate the 0th, 10th, 20th, ..., 90th percentiles for the 'score' column | |
percentiles = df['score'].quantile([0, .1, .2, .3, .4, .5, .6, .7, .8, .9]).tolist() | |
# Ensure the bins are unique and include the maximum score | |
bins = sorted(set(percentiles + [df['score'].max()])) | |
# Define the labels for the percentile ranges | |
# The number of labels should be one less than the number of bins | |
labels = [int(i * 10) for i in range(len(bins) - 1)] | |
# Add a 'percentile_ranges' column to the DataFrame | |
# This assigns each score to its corresponding percentile range | |
df['score_percentile'] = pd.cut(df['score'], bins=bins, labels=labels, include_lowest=True) | |
df['word_count'] = df['content'].apply(count_words) | |
df['url'] = 'https://www.reddit.com' + df['permalink'] | |
df['html_content'] = df['content'].apply(convert_markdown_to_html) | |
# Apply the function | |
df['subreddit'] = df['content'].apply(extract_subreddit) | |
topic_options = NomicTopicOptions(build_topic_model=True, community_description_target_field='subreddit') | |
delete_old_nomic() | |
# Create Atlas project | |
logger.info(f"Trying to create new version of Atlas...") | |
project = atlas.map_data(embeddings=np.stack(df['embedding'].values), | |
data=df[non_embedding_columns].to_dict(orient='records'), | |
id_field='id', | |
identifier='BORU Subreddit Neural Search', | |
topic_model=topic_options | |
) | |
logger.info(f"Succeeded in creating new version of nomic Atlas: {project.slug}") | |