Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
import io
|
4 |
-
import random
|
5 |
-
import os
|
6 |
-
import time
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
import json
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
API_URL = "https://api-inference.huggingface.co/models/
|
14 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
15 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
16 |
-
timeout = 100
|
17 |
|
18 |
-
|
19 |
-
if prompt == "" or prompt == None:
|
20 |
-
return None
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
28 |
-
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
29 |
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"steps": steps,
|
37 |
-
"cfg_scale": cfg_scale,
|
38 |
-
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
39 |
-
"strength": strength
|
40 |
-
}
|
41 |
-
|
42 |
-
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
43 |
-
if response.status_code != 200:
|
44 |
-
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
45 |
-
print(f"Response content: {response.text}")
|
46 |
-
if response.status_code == 503:
|
47 |
-
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
48 |
-
raise gr.Error(f"{response.status_code}")
|
49 |
|
50 |
-
|
51 |
-
image_bytes = response.content
|
52 |
-
image = Image.open(io.BytesIO(image_bytes))
|
53 |
-
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
54 |
-
return image
|
55 |
-
except Exception as e:
|
56 |
-
print(f"Error when trying to open the image: {e}")
|
57 |
-
return None
|
58 |
-
|
59 |
-
css = """
|
60 |
-
#app-container {
|
61 |
-
max-width: 600px;
|
62 |
-
margin-left: auto;
|
63 |
-
margin-right: auto;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
|
68 |
-
gr.HTML("<center><h1>Stable Diffusion 3 Medium</h1></center>")
|
69 |
-
with gr.Column(elem_id="app-container"):
|
70 |
-
with gr.Row():
|
71 |
-
with gr.Column(elem_id="prompt-container"):
|
72 |
-
with gr.Row():
|
73 |
-
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
74 |
-
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
75 |
-
with gr.Row():
|
76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
|
78 |
-
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
|
79 |
-
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
|
80 |
-
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
81 |
-
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
82 |
-
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
83 |
-
with gr.Row():
|
84 |
-
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
85 |
-
|
86 |
-
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)
|
87 |
|
88 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import io
|
|
|
|
|
|
|
5 |
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/Blane187/kana-arima-s1-ponyxl-lora-nochekaiser"
|
7 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
|
|
|
|
8 |
|
9 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
|
|
|
10 |
|
11 |
+
def query(inputs):
|
12 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": inputs})
|
13 |
+
image_bytes = response.content
|
14 |
+
image = Image.open(io.BytesIO(image_bytes))
|
15 |
+
return image
|
|
|
|
|
16 |
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
gr.Markdown("## Generate an Image using Hugging Face Model")
|
19 |
|
20 |
+
with gr.Row():
|
21 |
+
prompt_input = gr.Textbox(label="Enter a prompt", placeholder="Astronaut riding a horse")
|
22 |
+
generate_btn = gr.Button("Generate Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
output_image = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
generate_btn.click(fn=query, inputs=prompt_input, outputs=output_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
demo.launch()
|