Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import time | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("redoop/opt-1.3b") | |
model = AutoModelForCausalLM.from_pretrained("redoop/opt-1.3b") | |
model.eval() | |
#import intel_extension_for_pytorch as ipex | |
#model = ipex.optimize(model) | |
def generate(text): | |
#text = '<s>{}</s></s>'.format(text) | |
input_ids = tokenizer(text, return_tensors="pt").input_ids | |
#input_ids = input_ids.to(device) | |
outputs = model.generate(input_ids, max_new_tokens=200, do_sample=True, top_p=0.7, temperature=0.35, | |
repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id) | |
rets = tokenizer.batch_decode(outputs) | |
output = rets[0].strip().replace(text, "").replace('<|endoftext|>', "") | |
return output | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
def respond(message, chat_history): | |
#bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"]) | |
bot_message = generate(message) | |
chat_history.append((message, bot_message)) | |
time.sleep(1) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue(api_open=False) | |
if __name__ == "__main__": | |
demo.launch() |