Spaces:
Running
Running
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.runnables import RunnablePassthrough | |
from src.utils import load_config_values | |
from src.dev_llm import FakeLLM | |
# TODO: Change this to reflect prod model rather than dev models | |
# Initalise fake values and a fake LLM to test out the full pipeline | |
tmp_llm = FakeLLM() | |
tmp_pdf_text = "This patient is due for an appointment on 1st June 2024" # replace with Runner to a file uploader | |
# Load in model and pipeline configuration values | |
system_message, context_message, model_id = load_config_values( | |
config_keys=[ | |
"system_message", | |
"context_message", | |
"model_id", | |
] | |
) | |
prompt = ChatPromptTemplate.from_template( | |
template=context_message, | |
) | |
chain = ( | |
{ | |
"system_message": lambda x: system_message, | |
"pdf_text": lambda x: tmp_pdf_text, | |
"data_to_extract": RunnablePassthrough() | |
} | |
|prompt | |
|tmp_llm | |
) | |
print(chain.invoke("{\"appointment_date\"}")) | |