pdf-to-table / app_langchain.py
regraded01's picture
feat: check config keys are set properly
9f5f200
raw
history blame
3.9 kB
import streamlit as st
import yaml
import requests
import re
import os
from langchain_core.prompts import PromptTemplate
import streamlit as st
from src.pdfParser import get_pdf_text
# Get HuggingFace API key
api_key_name = "HUGGINGFACE_HUB_TOKEN"
api_key = os.getenv(api_key_name)
if api_key is None:
st.error(f"Failed to read `{api_key_name}`. Ensure the token is correctly located")
# Load in model configuration and check the required keys are present
model_config_dir = "config/model_config.yml"
config_keys = ["system_message", "model_id", "template"]
with open(model_config_dir, "r") as file:
model_config = yaml.safe_load(file)
for var in model_config.keys():
if var not in config_keys:
raise ValueError(f"`{var}` key missing from `{model_config_dir}`")
system_message = model_config["system_message"]
model_id = model_config["model_id"]
template = model_config["template"]
prompt_template = PromptTemplate(
template=template,
input_variables=["system_message", "user_message"]
)
def query(payload, model_id):
headers = {"Authorization": f"Bearer {api_key}"}
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def prompt_generator(system_message, user_message):
return f"""
<s>[INST] <<SYS>>
{system_message}
<</SYS>>
{user_message} [/INST]
"""
# Pattern to clean up text response from API
pattern = r".*\[/INST\]([\s\S]*)$"
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Include PDF upload ability
pdf_upload = st.file_uploader(
"Upload a .PDF here",
type=".pdf",
)
if pdf_upload is not None:
pdf_text = get_pdf_text(pdf_upload)
if "key_inputs" not in st.session_state:
st.session_state.key_inputs = {}
col1, col2, col3 = st.columns([3, 3, 2])
with col1:
key_name = st.text_input("Key/Column Name (e.g. patient_name)", key="key_name")
with col2:
key_description = st.text_area(
"*(Optional) Description of key/column", key="key_description"
)
with col3:
if st.button("Extract this column"):
if key_description:
st.session_state.key_inputs[key_name] = key_description
else:
st.session_state.key_inputs[key_name] = "No further description provided"
if st.session_state.key_inputs:
keys_title = st.write("\nKeys/Columns for extraction:")
keys_values = st.write(st.session_state.key_inputs)
with st.spinner("Extracting requested data"):
if st.button("Extract data!"):
user_message = f"""
Use the text provided and denoted by 3 backticks ```{pdf_text}```.
Extract the following columns and return a table that could be uploaded to an SQL database.
{'; '.join([key + ': ' + st.session_state.key_inputs[key] for key in st.session_state.key_inputs])}
"""
the_prompt = prompt_generator(
system_message=system_message, user_message=user_message
)
response = query(
{
"inputs": the_prompt,
"parameters": {"max_new_tokens": 500, "temperature": 0.1},
},
model_id,
)
try:
match = re.search(
pattern, response[0]["generated_text"], re.MULTILINE | re.DOTALL
)
if match:
response = match.group(1).strip()
response = eval(response)
st.success("Data Extracted Successfully!")
st.write(response)
except:
st.error("Unable to connect to model. Please try again later.")
# st.success(f"Data Extracted!")