regraded01 commited on
Commit
123ba7e
·
1 Parent(s): df95248

feat: include a temporary LLM class

Browse files
Files changed (2) hide show
  1. app_langchain.py +6 -124
  2. src/dev_llm.py +23 -0
app_langchain.py CHANGED
@@ -1,13 +1,10 @@
1
  import streamlit as st
2
- import yaml
3
- import requests
4
- import re
5
  import os
6
 
7
  from langchain_core.prompts import PromptTemplate
8
- import streamlit as st
9
 
10
- from src.pdfParser import get_pdf_text
 
11
 
12
  # Get HuggingFace API key
13
  api_key_name = "HUGGINGFACE_HUB_TOKEN"
@@ -15,127 +12,12 @@ api_key = os.getenv(api_key_name)
15
  if api_key is None:
16
  st.error(f"Failed to read `{api_key_name}`. Ensure the token is correctly located")
17
 
18
- # Load in model configuration and check the required keys are present
19
- model_config_dir = "config/model_config.yml"
20
- config_keys = ["system_message", "model_id", "template"]
21
-
22
- with open(model_config_dir, "r") as file:
23
- model_config = yaml.safe_load(file)
24
-
25
- for var in model_config.keys():
26
- if var not in config_keys:
27
- raise ValueError(f"`{var}` key missing from `{model_config_dir}`")
28
-
29
- system_message = model_config["system_message"]
30
- model_id = model_config["model_id"]
31
- template = model_config["template"]
32
 
33
- prompt_template = PromptTemplate(
34
  template=template,
35
  input_variables=["system_message", "user_message"]
36
  )
37
 
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
- def query(payload, model_id):
54
- headers = {"Authorization": f"Bearer {api_key}"}
55
- API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
56
- response = requests.post(API_URL, headers=headers, json=payload)
57
- return response.json()
58
-
59
-
60
- def prompt_generator(system_message, user_message):
61
- return f"""
62
- <s>[INST] <<SYS>>
63
- {system_message}
64
- <</SYS>>
65
- {user_message} [/INST]
66
- """
67
-
68
-
69
- # Pattern to clean up text response from API
70
- pattern = r".*\[/INST\]([\s\S]*)$"
71
-
72
- # Initialize chat history
73
- if "messages" not in st.session_state:
74
- st.session_state.messages = []
75
-
76
- # Include PDF upload ability
77
- pdf_upload = st.file_uploader(
78
- "Upload a .PDF here",
79
- type=".pdf",
80
- )
81
-
82
- if pdf_upload is not None:
83
- pdf_text = get_pdf_text(pdf_upload)
84
-
85
-
86
- if "key_inputs" not in st.session_state:
87
- st.session_state.key_inputs = {}
88
-
89
- col1, col2, col3 = st.columns([3, 3, 2])
90
-
91
- with col1:
92
- key_name = st.text_input("Key/Column Name (e.g. patient_name)", key="key_name")
93
-
94
- with col2:
95
- key_description = st.text_area(
96
- "*(Optional) Description of key/column", key="key_description"
97
- )
98
-
99
- with col3:
100
- if st.button("Extract this column"):
101
- if key_description:
102
- st.session_state.key_inputs[key_name] = key_description
103
- else:
104
- st.session_state.key_inputs[key_name] = "No further description provided"
105
-
106
- if st.session_state.key_inputs:
107
- keys_title = st.write("\nKeys/Columns for extraction:")
108
- keys_values = st.write(st.session_state.key_inputs)
109
-
110
- with st.spinner("Extracting requested data"):
111
- if st.button("Extract data!"):
112
- user_message = f"""
113
- Use the text provided and denoted by 3 backticks ```{pdf_text}```.
114
- Extract the following columns and return a table that could be uploaded to an SQL database.
115
- {'; '.join([key + ': ' + st.session_state.key_inputs[key] for key in st.session_state.key_inputs])}
116
- """
117
- the_prompt = prompt_generator(
118
- system_message=system_message, user_message=user_message
119
- )
120
- response = query(
121
- {
122
- "inputs": the_prompt,
123
- "parameters": {"max_new_tokens": 500, "temperature": 0.1},
124
- },
125
- model_id,
126
- )
127
- try:
128
- match = re.search(
129
- pattern, response[0]["generated_text"], re.MULTILINE | re.DOTALL
130
- )
131
- if match:
132
- response = match.group(1).strip()
133
-
134
- response = eval(response)
135
-
136
- st.success("Data Extracted Successfully!")
137
- st.write(response)
138
- except:
139
- st.error("Unable to connect to model. Please try again later.")
140
-
141
- # st.success(f"Data Extracted!")
 
1
  import streamlit as st
 
 
 
2
  import os
3
 
4
  from langchain_core.prompts import PromptTemplate
 
5
 
6
+ from src.utils import load_config_values
7
+ from src.dev_llm import FakeLLM
8
 
9
  # Get HuggingFace API key
10
  api_key_name = "HUGGINGFACE_HUB_TOKEN"
 
12
  if api_key is None:
13
  st.error(f"Failed to read `{api_key_name}`. Ensure the token is correctly located")
14
 
15
+ # Load in model and pipeline configuration values
16
+ system_message, model_id, template = load_config_values()
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ prompt = PromptTemplate(
19
  template=template,
20
  input_variables=["system_message", "user_message"]
21
  )
22
 
23
+ llm = FakeLLM()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/dev_llm.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.language_models.llms import LLM
2
+ from langchain_core.callbacks.manager import CallbackManagerForLLMRun
3
+ from typing import Any, List, Optional
4
+
5
+ class FakeLLM(LLM):
6
+ """
7
+ An LLM class that returns nothing of value and is a temp class designed to work in Langchain.
8
+ """
9
+ def _call(
10
+ self,
11
+ prompt: str,
12
+ stop: Optional[List[str]] = None,
13
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
14
+ **kwargs: Any,
15
+ ) -> str:
16
+ if stop is not None:
17
+ raise ValueError("stop kwargs are not permitted.")
18
+ return prompt
19
+
20
+ @property
21
+ def _llm_type(self) -> str:
22
+ """Get the type of language model used by this chat model. Used for logging purposes only."""
23
+ return "custom"