Spaces:
Running
Running
regraded01
commited on
Commit
·
2267014
1
Parent(s):
01296c9
init
Browse files- app.py +95 -0
- pdfParser.py +11 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import re
|
4 |
+
from pdfParser import get_pdf_text
|
5 |
+
|
6 |
+
api_key = st.secrets.hf_credentials.hf_api
|
7 |
+
|
8 |
+
model_id = "meta-llama/Llama-2-13b-chat-hf"
|
9 |
+
system_message = """
|
10 |
+
Your role is to take PDF documents and extract their raw text into a table format that can be uploaded into a database.
|
11 |
+
Return the table only. For example if you need to extract information about a report written on 2nd February 2011 with an author called Jane Mary then return this only:
|
12 |
+
| report_written_date | author_name | \n | --- | --- | \n | 02/02/2011 | Jane Mary |
|
13 |
+
"""
|
14 |
+
|
15 |
+
|
16 |
+
def query(payload, model_id):
|
17 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
18 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
19 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
|
23 |
+
def prompt_generator(system_message, user_message):
|
24 |
+
return f"""
|
25 |
+
<s>[INST] <<SYS>>
|
26 |
+
{system_message}
|
27 |
+
<</SYS>>
|
28 |
+
{user_message} [/INST]
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
# Pattern to clean up text response from API
|
33 |
+
pattern = r".*\[/INST\]([\s\S]*)$"
|
34 |
+
|
35 |
+
# Initialize chat history
|
36 |
+
if "messages" not in st.session_state:
|
37 |
+
st.session_state.messages = []
|
38 |
+
|
39 |
+
# Include PDF upload ability
|
40 |
+
pdf_upload = st.file_uploader(
|
41 |
+
"Upload a .PDF here",
|
42 |
+
type=".pdf",
|
43 |
+
)
|
44 |
+
|
45 |
+
if pdf_upload is not None:
|
46 |
+
pdf_text = get_pdf_text(pdf_upload)
|
47 |
+
|
48 |
+
|
49 |
+
if "key_inputs" not in st.session_state:
|
50 |
+
st.session_state.key_inputs = {}
|
51 |
+
|
52 |
+
col1, col2, col3 = st.columns([3, 3, 2])
|
53 |
+
|
54 |
+
with col1:
|
55 |
+
key_name = st.text_input("Key/Column Name (e.g. patient_name)", key="key_name")
|
56 |
+
|
57 |
+
with col2:
|
58 |
+
key_description = st.text_area(
|
59 |
+
"*(Optional) Description of key/column", key="key_description"
|
60 |
+
)
|
61 |
+
|
62 |
+
with col3:
|
63 |
+
if st.button("Extract this column"):
|
64 |
+
if key_description:
|
65 |
+
st.session_state.key_inputs[key_name] = key_description
|
66 |
+
else:
|
67 |
+
st.session_state.key_inputs[key_name] = "No further description provided"
|
68 |
+
|
69 |
+
if st.session_state.key_inputs:
|
70 |
+
keys_title = st.write("\nKeys/Columns for extraction:")
|
71 |
+
keys_values = st.write(st.session_state.key_inputs)
|
72 |
+
|
73 |
+
if st.button("Extract data!"):
|
74 |
+
user_message = f"""
|
75 |
+
Use the text provided and denoted by 3 backticks ```{pdf_text}```.
|
76 |
+
Extract the following columns and return a table that could be uploaded to an SQL database.
|
77 |
+
{'; '.join([key + ': ' + st.session_state.key_inputs[key] for key in st.session_state.key_inputs])}
|
78 |
+
"""
|
79 |
+
the_prompt = prompt_generator(
|
80 |
+
system_message=system_message, user_message=user_message
|
81 |
+
)
|
82 |
+
response = query(
|
83 |
+
{
|
84 |
+
"inputs": the_prompt,
|
85 |
+
"parameters": {"max_new_tokens": 500, "temperature": 0.1},
|
86 |
+
},
|
87 |
+
model_id,
|
88 |
+
)
|
89 |
+
match = re.search(
|
90 |
+
pattern, response[0]["generated_text"], re.MULTILINE | re.DOTALL
|
91 |
+
)
|
92 |
+
if match:
|
93 |
+
response = match.group(1).strip()
|
94 |
+
|
95 |
+
st.markdown(f"Data Extracted!\n{response}")
|
pdfParser.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache_resource
|
6 |
+
def get_pdf_text(filepath):
|
7 |
+
# Open the PDF file in read-binary mode
|
8 |
+
# Create a PDF object
|
9 |
+
pdf = PyPDF2.PdfReader(filepath)
|
10 |
+
pdf_text = " ".join([page.extract_text() for page in pdf.pages])
|
11 |
+
return pdf_text
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
PyPDF2
|
2 |
+
streamlit
|