Spaces:
Runtime error
Runtime error
Update demo.ipynb
Browse files- demo.ipynb +644 -0
demo.ipynb
CHANGED
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Textual-inversion fine-tuning for Stable Diffusion using d🧨ffusers
|
2 |
+
|
3 |
+
This notebook shows how to "teach" Stable Diffusion a new concept via textual-inversion using 🤗 Hugging Face [🧨 Diffusers library](https://github.com/huggingface/diffusers).
|
4 |
+
|
5 |
+
![Textual Inversion example](https://textual-inversion.github.io/static/images/editing/colorful_teapot.JPG)
|
6 |
+
_By using just 3-5 images you can teach new concepts to Stable Diffusion and personalize the model on your own images_
|
7 |
+
|
8 |
+
For a general introduction to the Stable Diffusion model please refer to this [colab](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb).
|
9 |
+
|
10 |
+
|
11 |
+
## Initial setup
|
12 |
+
#@title Install the required libs
|
13 |
+
!pip install -U -qq git+https://github.com/huggingface/diffusers.git
|
14 |
+
!pip install -qq accelerate transformers ftfy
|
15 |
+
#@title [Optional] Install xformers for faster and memory efficient training
|
16 |
+
#@markdown Acknowledgement: The xformers wheel are taken from [TheLastBen/fast-stable-diffusion](https://github.com/TheLastBen/fast-stable-diffusion). Thanks a lot for building these wheels!
|
17 |
+
%%time
|
18 |
+
|
19 |
+
!pip install -U --pre triton
|
20 |
+
|
21 |
+
from subprocess import getoutput
|
22 |
+
from IPython.display import HTML
|
23 |
+
from IPython.display import clear_output
|
24 |
+
import time
|
25 |
+
|
26 |
+
s = getoutput('nvidia-smi')
|
27 |
+
if 'T4' in s:
|
28 |
+
gpu = 'T4'
|
29 |
+
elif 'P100' in s:
|
30 |
+
gpu = 'P100'
|
31 |
+
elif 'V100' in s:
|
32 |
+
gpu = 'V100'
|
33 |
+
elif 'A100' in s:
|
34 |
+
gpu = 'A100'
|
35 |
+
|
36 |
+
while True:
|
37 |
+
try:
|
38 |
+
gpu=='T4'or gpu=='P100'or gpu=='V100'or gpu=='A100'
|
39 |
+
break
|
40 |
+
except:
|
41 |
+
pass
|
42 |
+
print('[1;31mit seems that your GPU is not supported at the moment')
|
43 |
+
time.sleep(5)
|
44 |
+
|
45 |
+
if (gpu=='T4'):
|
46 |
+
%pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/T4/xformers-0.0.13.dev0-py3-none-any.whl
|
47 |
+
|
48 |
+
elif (gpu=='P100'):
|
49 |
+
%pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/P100/xformers-0.0.13.dev0-py3-none-any.whl
|
50 |
+
|
51 |
+
elif (gpu=='V100'):
|
52 |
+
%pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/V100/xformers-0.0.13.dev0-py3-none-any.whl
|
53 |
+
|
54 |
+
elif (gpu=='A100'):
|
55 |
+
%pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/A100/xformers-0.0.13.dev0-py3-none-any.whl
|
56 |
+
#@title [Optional] Login to the Hugging Face Hub
|
57 |
+
#@markdown Add a token with the "Write Access" role to be able to add your trained concept to the [Library of Concepts](https://huggingface.co/sd-concepts-library)
|
58 |
+
from huggingface_hub import notebook_login
|
59 |
+
|
60 |
+
notebook_login()
|
61 |
+
#@title Import required libraries
|
62 |
+
import argparse
|
63 |
+
import itertools
|
64 |
+
import math
|
65 |
+
import os
|
66 |
+
import random
|
67 |
+
|
68 |
+
import numpy as np
|
69 |
+
import torch
|
70 |
+
import torch.nn.functional as F
|
71 |
+
import torch.utils.checkpoint
|
72 |
+
from torch.utils.data import Dataset
|
73 |
+
|
74 |
+
import PIL
|
75 |
+
from accelerate import Accelerator
|
76 |
+
from accelerate.logging import get_logger
|
77 |
+
from accelerate.utils import set_seed
|
78 |
+
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
79 |
+
from diffusers.optimization import get_scheduler
|
80 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
81 |
+
from PIL import Image
|
82 |
+
from torchvision import transforms
|
83 |
+
from tqdm.auto import tqdm
|
84 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
85 |
+
|
86 |
+
def image_grid(imgs, rows, cols):
|
87 |
+
assert len(imgs) == rows*cols
|
88 |
+
|
89 |
+
w, h = imgs[0].size
|
90 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
91 |
+
grid_w, grid_h = grid.size
|
92 |
+
|
93 |
+
for i, img in enumerate(imgs):
|
94 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
95 |
+
return grid
|
96 |
+
## Settings for teaching your new concept
|
97 |
+
#@markdown `pretrained_model_name_or_path` which Stable Diffusion checkpoint you want to use
|
98 |
+
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2" #@param ["stabilityai/stable-diffusion-2", "stabilityai/stable-diffusion-2-base", "CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"] {allow-input: true}
|
99 |
+
### Get the training images:
|
100 |
+
#### Download the images from the internet and save them locally.
|
101 |
+
|
102 |
+
You can also upload the images to colab or load from google drive, please check the next section if you want to use that.
|
103 |
+
#@markdown Add here the URLs to the images of the concept you are adding. 3-5 should be fine
|
104 |
+
urls = [
|
105 |
+
"https://huggingface.co/datasets/valhalla/images/resolve/main/2.jpeg",
|
106 |
+
"https://huggingface.co/datasets/valhalla/images/resolve/main/3.jpeg",
|
107 |
+
"https://huggingface.co/datasets/valhalla/images/resolve/main/5.jpeg",
|
108 |
+
"https://huggingface.co/datasets/valhalla/images/resolve/main/6.jpeg",
|
109 |
+
## You can add additional images here
|
110 |
+
]
|
111 |
+
#@title Download
|
112 |
+
import requests
|
113 |
+
import glob
|
114 |
+
from io import BytesIO
|
115 |
+
|
116 |
+
def download_image(url):
|
117 |
+
try:
|
118 |
+
response = requests.get(url)
|
119 |
+
except:
|
120 |
+
return None
|
121 |
+
return Image.open(BytesIO(response.content)).convert("RGB")
|
122 |
+
|
123 |
+
images = list(filter(None,[download_image(url) for url in urls]))
|
124 |
+
save_path = "./my_concept"
|
125 |
+
if not os.path.exists(save_path):
|
126 |
+
os.mkdir(save_path)
|
127 |
+
[image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)]
|
128 |
+
#### Load images from local folder or google drive
|
129 |
+
|
130 |
+
You can also load your own training images from google drive or upload them to colab usingthe files taband then provide the path to the directory containing images.
|
131 |
+
|
132 |
+
*Make sure that the directory only contains images as the following cells will read all the files from the provided directory.*
|
133 |
+
from google.colab import drive
|
134 |
+
drive.mount('/content/gdrive')
|
135 |
+
#@markdown `images_path` is a path to directory containing the training images. It could
|
136 |
+
images_path = "/content/sample_data/food" #@param {type:"string"}
|
137 |
+
while not os.path.exists(str(images_path)):
|
138 |
+
print('The images_path specified does not exist, use the colab file explorer to copy the path :')
|
139 |
+
images_path=input("")
|
140 |
+
save_path = images_path
|
141 |
+
#### Setup and check the images you have just added
|
142 |
+
images = []
|
143 |
+
for file_path in os.listdir(save_path):
|
144 |
+
try:
|
145 |
+
image_path = os.path.join(save_path, file_path)
|
146 |
+
images.append(Image.open(image_path).resize((512, 512)))
|
147 |
+
except:
|
148 |
+
print(f"{image_path} is not a valid image, please make sure to remove this file from the directory otherwise the training could fail.")
|
149 |
+
image_grid(images, 1, len(images))
|
150 |
+
#@title Settings for your newly created concept
|
151 |
+
#@markdown `what_to_teach`: what is it that you are teaching? `object` enables you to teach the model a new object to be used, `style` allows you to teach the model a new style one can use.
|
152 |
+
what_to_teach = "object" #@param ["object", "style"]
|
153 |
+
#@markdown `placeholder_token` is the token you are going to use to represent your new concept (so when you prompt the model, you will say "A `<my-placeholder-token>` in an amusement park"). We use angle brackets to differentiate a token from other words/tokens, to avoid collision.
|
154 |
+
placeholder_token = "\u003Cjapanese-oysters>" #@param {type:"string"}
|
155 |
+
#@markdown `initializer_token` is a word that can summarise what your new concept is, to be used as a starting point
|
156 |
+
initializer_token = "food" #@param {type:"string"}
|
157 |
+
## Teach the model a new concept (fine-tuning with textual inversion)
|
158 |
+
Execute this this sequence of cells to run the training process. The whole process may take from 1-4 hours. (Open this block if you are interested in how this process works under the hood or if you want to change advanced training settings or hyperparameters)
|
159 |
+
### Create Dataset
|
160 |
+
#@title Setup the prompt templates for training
|
161 |
+
imagenet_templates_small = [
|
162 |
+
"a photo of a {}",
|
163 |
+
"a rendering of a {}",
|
164 |
+
"a cropped photo of the {}",
|
165 |
+
"the photo of a {}",
|
166 |
+
"a photo of a clean {}",
|
167 |
+
"a photo of a dirty {}",
|
168 |
+
"a dark photo of the {}",
|
169 |
+
"a photo of my {}",
|
170 |
+
"a photo of the cool {}",
|
171 |
+
"a close-up photo of a {}",
|
172 |
+
"a bright photo of the {}",
|
173 |
+
"a cropped photo of a {}",
|
174 |
+
"a photo of the {}",
|
175 |
+
"a good photo of the {}",
|
176 |
+
"a photo of one {}",
|
177 |
+
"a close-up photo of the {}",
|
178 |
+
"a rendition of the {}",
|
179 |
+
"a photo of the clean {}",
|
180 |
+
"a rendition of a {}",
|
181 |
+
"a photo of a nice {}",
|
182 |
+
"a good photo of a {}",
|
183 |
+
"a photo of the nice {}",
|
184 |
+
"a photo of the small {}",
|
185 |
+
"a photo of the weird {}",
|
186 |
+
"a photo of the large {}",
|
187 |
+
"a photo of a cool {}",
|
188 |
+
"a photo of a small {}",
|
189 |
+
]
|
190 |
+
|
191 |
+
imagenet_style_templates_small = [
|
192 |
+
"a painting in the style of {}",
|
193 |
+
"a rendering in the style of {}",
|
194 |
+
"a cropped painting in the style of {}",
|
195 |
+
"the painting in the style of {}",
|
196 |
+
"a clean painting in the style of {}",
|
197 |
+
"a dirty painting in the style of {}",
|
198 |
+
"a dark painting in the style of {}",
|
199 |
+
"a picture in the style of {}",
|
200 |
+
"a cool painting in the style of {}",
|
201 |
+
"a close-up painting in the style of {}",
|
202 |
+
"a bright painting in the style of {}",
|
203 |
+
"a cropped painting in the style of {}",
|
204 |
+
"a good painting in the style of {}",
|
205 |
+
"a close-up painting in the style of {}",
|
206 |
+
"a rendition in the style of {}",
|
207 |
+
"a nice painting in the style of {}",
|
208 |
+
"a small painting in the style of {}",
|
209 |
+
"a weird painting in the style of {}",
|
210 |
+
"a large painting in the style of {}",
|
211 |
+
]
|
212 |
+
#@title Setup the dataset
|
213 |
+
class TextualInversionDataset(Dataset):
|
214 |
+
def __init__(
|
215 |
+
self,
|
216 |
+
data_root,
|
217 |
+
tokenizer,
|
218 |
+
learnable_property="object", # [object, style]
|
219 |
+
size=512,
|
220 |
+
repeats=100,
|
221 |
+
interpolation="bicubic",
|
222 |
+
flip_p=0.5,
|
223 |
+
set="train",
|
224 |
+
placeholder_token="*",
|
225 |
+
center_crop=False,
|
226 |
+
):
|
227 |
+
|
228 |
+
self.data_root = data_root
|
229 |
+
self.tokenizer = tokenizer
|
230 |
+
self.learnable_property = learnable_property
|
231 |
+
self.size = size
|
232 |
+
self.placeholder_token = placeholder_token
|
233 |
+
self.center_crop = center_crop
|
234 |
+
self.flip_p = flip_p
|
235 |
+
|
236 |
+
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
237 |
+
|
238 |
+
self.num_images = len(self.image_paths)
|
239 |
+
self._length = self.num_images
|
240 |
+
|
241 |
+
if set == "train":
|
242 |
+
self._length = self.num_images * repeats
|
243 |
+
|
244 |
+
self.interpolation = {
|
245 |
+
"linear": PIL.Image.LINEAR,
|
246 |
+
"bilinear": PIL.Image.BILINEAR,
|
247 |
+
"bicubic": PIL.Image.BICUBIC,
|
248 |
+
"lanczos": PIL.Image.LANCZOS,
|
249 |
+
}[interpolation]
|
250 |
+
|
251 |
+
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
|
252 |
+
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
|
253 |
+
|
254 |
+
def __len__(self):
|
255 |
+
return self._length
|
256 |
+
|
257 |
+
def __getitem__(self, i):
|
258 |
+
example = {}
|
259 |
+
image = Image.open(self.image_paths[i % self.num_images])
|
260 |
+
|
261 |
+
if not image.mode == "RGB":
|
262 |
+
image = image.convert("RGB")
|
263 |
+
|
264 |
+
placeholder_string = self.placeholder_token
|
265 |
+
text = random.choice(self.templates).format(placeholder_string)
|
266 |
+
|
267 |
+
example["input_ids"] = self.tokenizer(
|
268 |
+
text,
|
269 |
+
padding="max_length",
|
270 |
+
truncation=True,
|
271 |
+
max_length=self.tokenizer.model_max_length,
|
272 |
+
return_tensors="pt",
|
273 |
+
).input_ids[0]
|
274 |
+
|
275 |
+
# default to score-sde preprocessing
|
276 |
+
img = np.array(image).astype(np.uint8)
|
277 |
+
|
278 |
+
if self.center_crop:
|
279 |
+
crop = min(img.shape[0], img.shape[1])
|
280 |
+
h, w, = (
|
281 |
+
img.shape[0],
|
282 |
+
img.shape[1],
|
283 |
+
)
|
284 |
+
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
|
285 |
+
|
286 |
+
image = Image.fromarray(img)
|
287 |
+
image = image.resize((self.size, self.size), resample=self.interpolation)
|
288 |
+
|
289 |
+
image = self.flip_transform(image)
|
290 |
+
image = np.array(image).astype(np.uint8)
|
291 |
+
image = (image / 127.5 - 1.0).astype(np.float32)
|
292 |
+
|
293 |
+
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
|
294 |
+
return example
|
295 |
+
### Setting up the model
|
296 |
+
#@title Load the tokenizer and add the placeholder token as a additional special token.
|
297 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
298 |
+
pretrained_model_name_or_path,
|
299 |
+
subfolder="tokenizer",
|
300 |
+
)
|
301 |
+
|
302 |
+
# Add the placeholder token in tokenizer
|
303 |
+
num_added_tokens = tokenizer.add_tokens(placeholder_token)
|
304 |
+
if num_added_tokens == 0:
|
305 |
+
raise ValueError(
|
306 |
+
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
|
307 |
+
" `placeholder_token` that is not already in the tokenizer."
|
308 |
+
)
|
309 |
+
#@title Get token ids for our placeholder and initializer token. This code block will complain if initializer string is not a single token
|
310 |
+
# Convert the initializer_token, placeholder_token to ids
|
311 |
+
token_ids = tokenizer.encode(initializer_token, add_special_tokens=False)
|
312 |
+
# Check if initializer_token is a single token or a sequence of tokens
|
313 |
+
if len(token_ids) > 1:
|
314 |
+
raise ValueError("The initializer token must be a single token.")
|
315 |
+
|
316 |
+
initializer_token_id = token_ids[0]
|
317 |
+
placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token)
|
318 |
+
#@title Load the Stable Diffusion model
|
319 |
+
# Load models and create wrapper for stable diffusion
|
320 |
+
# pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path)
|
321 |
+
# del pipeline
|
322 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
323 |
+
pretrained_model_name_or_path, subfolder="text_encoder"
|
324 |
+
)
|
325 |
+
vae = AutoencoderKL.from_pretrained(
|
326 |
+
pretrained_model_name_or_path, subfolder="vae"
|
327 |
+
)
|
328 |
+
unet = UNet2DConditionModel.from_pretrained(
|
329 |
+
pretrained_model_name_or_path, subfolder="unet"
|
330 |
+
)
|
331 |
+
We have added the `placeholder_token` in the `tokenizer` so we resize the token embeddings here, this will a new embedding vector in the token embeddings for our `placeholder_token`
|
332 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
333 |
+
Initialise the newly added placeholder token with the embeddings of the initializer token
|
334 |
+
token_embeds = text_encoder.get_input_embeddings().weight.data
|
335 |
+
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
|
336 |
+
In Textual-Inversion we only train the newly added embedding vector, so lets freeze rest of the model parameters here
|
337 |
+
def freeze_params(params):
|
338 |
+
for param in params:
|
339 |
+
param.requires_grad = False
|
340 |
+
|
341 |
+
# Freeze vae and unet
|
342 |
+
freeze_params(vae.parameters())
|
343 |
+
freeze_params(unet.parameters())
|
344 |
+
# Freeze all parameters except for the token embeddings in text encoder
|
345 |
+
params_to_freeze = itertools.chain(
|
346 |
+
text_encoder.text_model.encoder.parameters(),
|
347 |
+
text_encoder.text_model.final_layer_norm.parameters(),
|
348 |
+
text_encoder.text_model.embeddings.position_embedding.parameters(),
|
349 |
+
)
|
350 |
+
freeze_params(params_to_freeze)
|
351 |
+
### Creating our training data
|
352 |
+
Let's create the Dataset and Dataloader
|
353 |
+
train_dataset = TextualInversionDataset(
|
354 |
+
data_root=save_path,
|
355 |
+
tokenizer=tokenizer,
|
356 |
+
size=vae.sample_size,
|
357 |
+
placeholder_token=placeholder_token,
|
358 |
+
repeats=100,
|
359 |
+
learnable_property=what_to_teach, #Option selected above between object and style
|
360 |
+
center_crop=False,
|
361 |
+
set="train",
|
362 |
+
)
|
363 |
+
def create_dataloader(train_batch_size=1):
|
364 |
+
return torch.utils.data.DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
|
365 |
+
Create noise_scheduler for training
|
366 |
+
noise_scheduler = DDPMScheduler.from_config(pretrained_model_name_or_path, subfolder="scheduler")
|
367 |
+
### Training
|
368 |
+
Define hyperparameters for our training
|
369 |
+
If you are not happy with your results, you can tune the `learning_rate` and the `max_train_steps`
|
370 |
+
#@title Setting up all training args
|
371 |
+
hyperparameters = {
|
372 |
+
"learning_rate": 5e-04,
|
373 |
+
"scale_lr": True,
|
374 |
+
"max_train_steps": 2000,
|
375 |
+
"save_steps": 250,
|
376 |
+
"train_batch_size": 4,
|
377 |
+
"gradient_accumulation_steps": 1,
|
378 |
+
"gradient_checkpointing": True,
|
379 |
+
"mixed_precision": "fp16",
|
380 |
+
"seed": 42,
|
381 |
+
"output_dir": "sd-concept-output"
|
382 |
+
}
|
383 |
+
!mkdir -p sd-concept-output
|
384 |
+
Train!
|
385 |
+
#@title Training function
|
386 |
+
logger = get_logger(__name__)
|
387 |
+
|
388 |
+
def save_progress(text_encoder, placeholder_token_id, accelerator, save_path):
|
389 |
+
logger.info("Saving embeddings")
|
390 |
+
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id]
|
391 |
+
learned_embeds_dict = {placeholder_token: learned_embeds.detach().cpu()}
|
392 |
+
torch.save(learned_embeds_dict, save_path)
|
393 |
+
|
394 |
+
def training_function(text_encoder, vae, unet):
|
395 |
+
train_batch_size = hyperparameters["train_batch_size"]
|
396 |
+
gradient_accumulation_steps = hyperparameters["gradient_accumulation_steps"]
|
397 |
+
learning_rate = hyperparameters["learning_rate"]
|
398 |
+
max_train_steps = hyperparameters["max_train_steps"]
|
399 |
+
output_dir = hyperparameters["output_dir"]
|
400 |
+
gradient_checkpointing = hyperparameters["gradient_checkpointing"]
|
401 |
+
|
402 |
+
accelerator = Accelerator(
|
403 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
404 |
+
mixed_precision=hyperparameters["mixed_precision"]
|
405 |
+
)
|
406 |
+
|
407 |
+
if gradient_checkpointing:
|
408 |
+
text_encoder.gradient_checkpointing_enable()
|
409 |
+
unet.enable_gradient_checkpointing()
|
410 |
+
|
411 |
+
train_dataloader = create_dataloader(train_batch_size)
|
412 |
+
|
413 |
+
if hyperparameters["scale_lr"]:
|
414 |
+
learning_rate = (
|
415 |
+
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
|
416 |
+
)
|
417 |
+
|
418 |
+
# Initialize the optimizer
|
419 |
+
optimizer = torch.optim.AdamW(
|
420 |
+
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
|
421 |
+
lr=learning_rate,
|
422 |
+
)
|
423 |
+
|
424 |
+
text_encoder, optimizer, train_dataloader = accelerator.prepare(
|
425 |
+
text_encoder, optimizer, train_dataloader
|
426 |
+
)
|
427 |
+
|
428 |
+
weight_dtype = torch.float32
|
429 |
+
if accelerator.mixed_precision == "fp16":
|
430 |
+
weight_dtype = torch.float16
|
431 |
+
elif accelerator.mixed_precision == "bf16":
|
432 |
+
weight_dtype = torch.bfloat16
|
433 |
+
|
434 |
+
# Move vae and unet to device
|
435 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
436 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
437 |
+
|
438 |
+
# Keep vae in eval mode as we don't train it
|
439 |
+
vae.eval()
|
440 |
+
# Keep unet in train mode to enable gradient checkpointing
|
441 |
+
unet.train()
|
442 |
+
|
443 |
+
|
444 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
445 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
|
446 |
+
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
|
447 |
+
|
448 |
+
# Train!
|
449 |
+
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
|
450 |
+
|
451 |
+
logger.info("***** Running training *****")
|
452 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
453 |
+
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
|
454 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
455 |
+
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
|
456 |
+
logger.info(f" Total optimization steps = {max_train_steps}")
|
457 |
+
# Only show the progress bar once on each machine.
|
458 |
+
progress_bar = tqdm(range(max_train_steps), disable=not accelerator.is_local_main_process)
|
459 |
+
progress_bar.set_description("Steps")
|
460 |
+
global_step = 0
|
461 |
+
|
462 |
+
for epoch in range(num_train_epochs):
|
463 |
+
text_encoder.train()
|
464 |
+
for step, batch in enumerate(train_dataloader):
|
465 |
+
with accelerator.accumulate(text_encoder):
|
466 |
+
# Convert images to latent space
|
467 |
+
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach()
|
468 |
+
latents = latents * 0.18215
|
469 |
+
|
470 |
+
# Sample noise that we'll add to the latents
|
471 |
+
noise = torch.randn_like(latents)
|
472 |
+
bsz = latents.shape[0]
|
473 |
+
# Sample a random timestep for each image
|
474 |
+
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device).long()
|
475 |
+
|
476 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
477 |
+
# (this is the forward diffusion process)
|
478 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
479 |
+
|
480 |
+
# Get the text embedding for conditioning
|
481 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
482 |
+
|
483 |
+
# Predict the noise residual
|
484 |
+
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states.to(weight_dtype)).sample
|
485 |
+
|
486 |
+
# Get the target for loss depending on the prediction type
|
487 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
488 |
+
target = noise
|
489 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
490 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
491 |
+
else:
|
492 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
493 |
+
|
494 |
+
loss = F.mse_loss(noise_pred, target, reduction="none").mean([1, 2, 3]).mean()
|
495 |
+
accelerator.backward(loss)
|
496 |
+
|
497 |
+
# Zero out the gradients for all token embeddings except the newly added
|
498 |
+
# embeddings for the concept, as we only want to optimize the concept embeddings
|
499 |
+
if accelerator.num_processes > 1:
|
500 |
+
grads = text_encoder.module.get_input_embeddings().weight.grad
|
501 |
+
else:
|
502 |
+
grads = text_encoder.get_input_embeddings().weight.grad
|
503 |
+
# Get the index for tokens that we want to zero the grads for
|
504 |
+
index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id
|
505 |
+
grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0)
|
506 |
+
|
507 |
+
optimizer.step()
|
508 |
+
optimizer.zero_grad()
|
509 |
+
|
510 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
511 |
+
if accelerator.sync_gradients:
|
512 |
+
progress_bar.update(1)
|
513 |
+
global_step += 1
|
514 |
+
if global_step % hyperparameters["save_steps"] == 0:
|
515 |
+
save_path = os.path.join(output_dir, f"learned_embeds-step-{global_step}.bin")
|
516 |
+
save_progress(text_encoder, placeholder_token_id, accelerator, save_path)
|
517 |
+
|
518 |
+
logs = {"loss": loss.detach().item()}
|
519 |
+
progress_bar.set_postfix(**logs)
|
520 |
+
|
521 |
+
if global_step >= max_train_steps:
|
522 |
+
break
|
523 |
+
|
524 |
+
accelerator.wait_for_everyone()
|
525 |
+
|
526 |
+
|
527 |
+
# Create the pipeline using using the trained modules and save it.
|
528 |
+
if accelerator.is_main_process:
|
529 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
530 |
+
pretrained_model_name_or_path,
|
531 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
532 |
+
tokenizer=tokenizer,
|
533 |
+
vae=vae,
|
534 |
+
unet=unet,
|
535 |
+
)
|
536 |
+
pipeline.save_pretrained(output_dir)
|
537 |
+
# Also save the newly trained embeddings
|
538 |
+
save_path = os.path.join(output_dir, f"learned_embeds.bin")
|
539 |
+
save_progress(text_encoder, placeholder_token_id, accelerator, save_path)
|
540 |
+
import accelerate
|
541 |
+
accelerate.notebook_launcher(training_function, args=(text_encoder, vae, unet))
|
542 |
+
|
543 |
+
for param in itertools.chain(unet.parameters(), text_encoder.parameters()):
|
544 |
+
if param.grad is not None:
|
545 |
+
del param.grad # free some memory
|
546 |
+
torch.cuda.empty_cache()
|
547 |
+
## Run the code with your newly trained model
|
548 |
+
If you have just trained your model with the code above, use the block below to run it
|
549 |
+
|
550 |
+
To save this concept for re-using, download the `learned_embeds.bin` file or save it on the library of concepts.
|
551 |
+
|
552 |
+
Use the [Stable Conceptualizer notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) for inference with persistently saved pre-trained concepts
|
553 |
+
#@title Save your newly created concept to the [library of concepts](https://huggingface.co/sd-concepts-library)?
|
554 |
+
|
555 |
+
save_concept_to_public_library = True #@param {type:"boolean"}
|
556 |
+
name_of_your_concept = "Japanese oysters" #@param {type:"string"}
|
557 |
+
#@markdown `hf_token_write`: leave blank if you logged in with a token with `write access` in the [Initial Setup](#scrollTo=KbzZ9xe6dWwf). If not, [go to your tokens settings and create a write access token](https://huggingface.co/settings/tokens)
|
558 |
+
hf_token_write = "" #@param {type:"string"}
|
559 |
+
|
560 |
+
if(save_concept_to_public_library):
|
561 |
+
from slugify import slugify
|
562 |
+
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
|
563 |
+
from huggingface_hub import create_repo
|
564 |
+
repo_id = f"sd-concepts-library/{slugify(name_of_your_concept)}"
|
565 |
+
output_dir = hyperparameters["output_dir"]
|
566 |
+
if(not hf_token_write):
|
567 |
+
with open(HfFolder.path_token, 'r') as fin: hf_token = fin.read();
|
568 |
+
else:
|
569 |
+
hf_token = hf_token_write
|
570 |
+
#Join the Concepts Library organization if you aren't part of it already
|
571 |
+
!curl -X POST -H 'Authorization: Bearer '$hf_token -H 'Content-Type: application/json' https://huggingface.co/organizations/sd-concepts-library/share/VcLXJtzwwxnHYCkNMLpSJCdnNFZHQwWywv
|
572 |
+
images_upload = os.listdir("my_concept")
|
573 |
+
image_string = ""
|
574 |
+
repo_id = f"sd-concepts-library/{slugify(name_of_your_concept)}"
|
575 |
+
for i, image in enumerate(images_upload):
|
576 |
+
image_string = f'''{image_string}![{placeholder_token} {i}](https://huggingface.co/{repo_id}/resolve/main/concept_images/{image})
|
577 |
+
'''
|
578 |
+
if(what_to_teach == "style"):
|
579 |
+
what_to_teach_article = f"a `{what_to_teach}`"
|
580 |
+
else:
|
581 |
+
what_to_teach_article = f"an `{what_to_teach}`"
|
582 |
+
readme_text = f'''---
|
583 |
+
license: mit
|
584 |
+
---
|
585 |
+
### {name_of_your_concept} on Stable Diffusion
|
586 |
+
This is the `{placeholder_token}` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
|
587 |
+
|
588 |
+
Here is the new concept you will be able to use as {what_to_teach_article}:
|
589 |
+
{image_string}
|
590 |
+
'''
|
591 |
+
#Save the readme to a file
|
592 |
+
readme_file = open("README.md", "w")
|
593 |
+
readme_file.write(readme_text)
|
594 |
+
readme_file.close()
|
595 |
+
#Save the token identifier to a file
|
596 |
+
text_file = open("token_identifier.txt", "w")
|
597 |
+
text_file.write(placeholder_token)
|
598 |
+
text_file.close()
|
599 |
+
#Save the type of teached thing to a file
|
600 |
+
type_file = open("type_of_concept.txt","w")
|
601 |
+
type_file.write(what_to_teach)
|
602 |
+
type_file.close()
|
603 |
+
operations = [
|
604 |
+
CommitOperationAdd(path_in_repo="learned_embeds.bin", path_or_fileobj=f"{output_dir}/learned_embeds.bin"),
|
605 |
+
CommitOperationAdd(path_in_repo="token_identifier.txt", path_or_fileobj="token_identifier.txt"),
|
606 |
+
CommitOperationAdd(path_in_repo="type_of_concept.txt", path_or_fileobj="type_of_concept.txt"),
|
607 |
+
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"),
|
608 |
+
]
|
609 |
+
create_repo(repo_id,private=True, token=hf_token)
|
610 |
+
api = HfApi()
|
611 |
+
api.create_commit(
|
612 |
+
repo_id=repo_id,
|
613 |
+
operations=operations,
|
614 |
+
commit_message=f"Upload the concept {name_of_your_concept} embeds and token",
|
615 |
+
token=hf_token
|
616 |
+
)
|
617 |
+
api.upload_folder(
|
618 |
+
folder_path=save_path,
|
619 |
+
path_in_repo="concept_images",
|
620 |
+
repo_id=repo_id,
|
621 |
+
token=hf_token
|
622 |
+
)
|
623 |
+
#@title Set up the pipeline
|
624 |
+
from diffusers import DPMSolverMultistepScheduler
|
625 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
626 |
+
hyperparameters["output_dir"],
|
627 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(hyperparameters["output_dir"], subfolder="scheduler"),
|
628 |
+
torch_dtype=torch.float16,
|
629 |
+
).to("cuda")
|
630 |
+
#@title Run the Stable Diffusion pipeline
|
631 |
+
#@markdown Don't forget to use the placeholder token in your prompt
|
632 |
+
|
633 |
+
prompt = "a \u003Cjapanese-oysters> inside ramen-bowl" #@param {type:"string"}
|
634 |
+
|
635 |
+
num_samples = 2 #@param {type:"number"}
|
636 |
+
num_rows = 1 #@param {type:"number"}
|
637 |
+
|
638 |
+
all_images = []
|
639 |
+
for _ in range(num_rows):
|
640 |
+
images = pipe([prompt] * num_samples, num_inference_steps=30, guidance_scale=7.5).images
|
641 |
+
all_images.extend(images)
|
642 |
+
|
643 |
+
grid = image_grid(all_images, num_rows, num_samples)
|
644 |
+
grid
|