import torch | |
from diffusers.utils import load_image | |
from diffusers import FluxControlNetModel | |
from diffusers.pipelines import FluxControlNetPipeline | |
# Load pipeline | |
controlnet = FluxControlNetModel.from_pretrained( | |
"jasperai/Flux.1-dev-Controlnet-Upscaler", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxControlNetPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
controlnet=controlnet, | |
torch_dtype=torch.bfloat16 | |
) | |
pipe.to("cpu") | |
# Load a control image | |
control_image = load_image( | |
"https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler/resolve/main/examples/input.jpg" | |
) | |
w, h = control_image.size | |
# Upscale x4 | |
control_image = control_image.resize((w * 4, h * 4)) | |
image = pipe( | |
prompt="", | |
control_image=control_image, | |
controlnet_conditioning_scale=0.6, | |
num_inference_steps=28, | |
guidance_scale=3.5, | |
height=control_image.size[1], | |
width=control_image.size[0] | |
).images[0] | |
image | |