leaderboard / app.py
kexinhuang12345
prompt for restart
06fa362
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
nc_tasks,
nr_tasks,
lp_tasks,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
#COLS,
COLS_NC,
COLS_NR,
COLS_LP,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn_NodeClassification,
AutoEvalColumn_NodeRegression,
AutoEvalColumn_LinkPrediction,
#AutoEvalColumn,
ModelType,
TASK_LIST,
OFFICIAL,
HONOR,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
restart_go = 1
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
query: str,
):
#filtered_df = filter_models(hidden_df, size_query, show_deleted)
filtered_df = filter_queries(query, hidden_df)
print(columns)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
"Model"
]
# We use COLS to maintain sorting
#print(df)
#print(df.columns)
#print([c for c in df.columns if c in columns])
filtered_df = df[
always_here_cols + [c for c in df.columns if c in columns]
]
#print(filtered_df)
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, size_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
#type_emoji = [t[0] for t in type_query]
#filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
#filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Entity Classification Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
global COLS
COLS = COLS_NC
AutoEvalColumn = AutoEvalColumn_NodeClassification
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Classification")
leaderboard_df = original_df.copy()
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
#print(leaderboard_df)
#print(shown_columns.value)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
for selector in [shown_columns]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
queue=True,
)
gr.Markdown("Evaluation metric: AUROC ⬆️")
with gr.TabItem("πŸ… Entity Regression Leaderboard", elem_id="llm-benchmark-tab-table", id=1):
COLS = COLS_NR
AutoEvalColumn = AutoEvalColumn_NodeRegression
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Regression")
leaderboard_df = original_df.copy()
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
#print(leaderboard_df)
#print(shown_columns)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
for selector in [shown_columns]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
queue=True,
)
gr.Markdown("Evaluation metric: MAE ⬇️")
with gr.TabItem("πŸ… Recommendation Leaderboard", elem_id="llm-benchmark-tab-table", id=2):
COLS = COLS_LP
AutoEvalColumn = AutoEvalColumn_LinkPrediction
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Link Prediction")
leaderboard_df = original_df.copy()
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
#print(leaderboard_df)
#print(shown_columns)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
for selector in [shown_columns]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
queue=True,
)
gr.Markdown("Evaluation metric: MAP ⬆️")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
author_name_textbox = gr.Textbox(label="Your name")
email_textbox = gr.Textbox(label="Your email")
relbench_version_textbox = gr.Textbox(label="RelBench version")
model_name_textbox = gr.Textbox(label="Model name")
'''
dataset_name_textbox = gr.Dropdown(
choices=[t.value.name for t in TASK_LIST],
label="Task name (e.g. rel-amazon-user-churn)",
multiselect=False,
value=None,
interactive=True,
)
'''
official_or_not = gr.Dropdown(
choices=[i.value.name for i in OFFICIAL],
label="Is it an official submission?",
multiselect=False,
value=None,
interactive=True,
)
paper_url_textbox = gr.Textbox(label="Paper URL Link")
github_url_textbox = gr.Textbox(label="GitHub URL Link")
#parameters_textbox = gr.Textbox(label="Number of parameters")
task_track = gr.Dropdown(
choices=['Entity Classification', 'Entity Regression', 'Recommendation'],
label="Choose the task track",
multiselect=False,
value=None,
interactive=True,
)
honor_code = gr.Dropdown(
choices=[i.value.name for i in HONOR],
label="Do you agree to the honor code?",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
test_performance = gr.Textbox(lines = 16, label="Test set performance, use {task: [mean,std]} format e.g. {'rel-amazon/user-churn': [0.352,0.023], 'rel-amazon/user-ltv': [0.304,0.022], ...}")
valid_performance = gr.Textbox(lines = 16, label="Validation set performance, use {task: [mean,std]} format e.g. {'rel-amazon/user-churn': [0.352,0.023], 'rel-amazon/user-ltv': [0.304,0.022], ...}")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
author_name_textbox,
email_textbox,
relbench_version_textbox,
model_name_textbox,
official_or_not,
test_performance,
valid_performance,
paper_url_textbox,
github_url_textbox,
#parameters_textbox,
honor_code,
task_track
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()