relik-ie commited on
Commit
8c42108
·
verified ·
1 Parent(s): b213e43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from functools import partial
2
  import os
3
 
@@ -121,11 +122,11 @@ relik_out: RelikOutput = relik("Michael Jordan was one of the best players in th
121
  For more information, please refer to the [source code](https://github.com/SapienzaNLP/relik/).
122
  """
123
 
124
- wikipedia_retriever = GoldenRetriever("relik-ie/encoder-e5-base-v2-wikipedia")
125
- wikipedia_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-base-v2-wikipedia-index", index_precision="bf16")
126
 
127
- wikidata_retriever = GoldenRetriever("relik-ie/encoder-e5-small-v2-wikipedia-relations")
128
- wikidata_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-small-v2-wikipedia-relations-index", index_precision="bf16")
129
 
130
  relik_available_models = [
131
  "relik-ie/relik-reader-small-cie-wikipedia",
@@ -137,6 +138,7 @@ relik_available_models = [
137
  relik_models = {
138
  "sapienzanlp/relik-entity-linking-large": Relik.from_pretrained(
139
  "sapienzanlp/relik-entity-linking-large",
 
140
  index=wikipedia_index,
141
  retriever=wikipedia_retriever,
142
  reader_kwargs={"dataset_kwargs": {"use_nme": True}},
@@ -158,12 +160,14 @@ relik_models = {
158
  "relik-ie/relik-relation-extraction-large-wikipedia": Relik.from_pretrained(
159
  "relik-ie/relik-relation-extraction-large-wikipedia",
160
  index=wikidata_index,
 
161
  retriever=wikidata_retriever,
162
  device="cuda",
163
  ),
164
  "relik-ie/relik-entity-linking-large-robust": Relik.from_pretrained(
165
  "relik-ie/relik-entity-linking-large-robust",
166
  index=wikipedia_index,
 
167
  retriever=wikipedia_retriever,
168
  reader_kwargs={"dataset_kwargs": {"use_nme": True}},
169
  ),
@@ -276,7 +280,7 @@ def generate_graph(spans, response, colors, dict_ents, bgcolor="#111827", font_c
276
  allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
277
  allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
278
 
279
-
280
  def text_analysis(Text, Model, Relation_Threshold, Window_Size, Window_Stride):
281
  global loaded_model
282
  if Model is None:
 
1
+ import spaces
2
  from functools import partial
3
  import os
4
 
 
122
  For more information, please refer to the [source code](https://github.com/SapienzaNLP/relik/).
123
  """
124
 
125
+ wikipedia_retriever = GoldenRetriever("relik-ie/encoder-e5-base-v2-wikipedia", device="cuda")
126
+ wikipedia_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-base-v2-wikipedia-index", index_precision="bf16", device="cuda")
127
 
128
+ wikidata_retriever = GoldenRetriever("relik-ie/encoder-e5-small-v2-wikipedia-relations", device="cuda")
129
+ wikidata_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-small-v2-wikipedia-relations-index", index_precision="bf16", device="cuda")
130
 
131
  relik_available_models = [
132
  "relik-ie/relik-reader-small-cie-wikipedia",
 
138
  relik_models = {
139
  "sapienzanlp/relik-entity-linking-large": Relik.from_pretrained(
140
  "sapienzanlp/relik-entity-linking-large",
141
+ device="cuda",
142
  index=wikipedia_index,
143
  retriever=wikipedia_retriever,
144
  reader_kwargs={"dataset_kwargs": {"use_nme": True}},
 
160
  "relik-ie/relik-relation-extraction-large-wikipedia": Relik.from_pretrained(
161
  "relik-ie/relik-relation-extraction-large-wikipedia",
162
  index=wikidata_index,
163
+ device="cuda",
164
  retriever=wikidata_retriever,
165
  device="cuda",
166
  ),
167
  "relik-ie/relik-entity-linking-large-robust": Relik.from_pretrained(
168
  "relik-ie/relik-entity-linking-large-robust",
169
  index=wikipedia_index,
170
+ device="cuda",
171
  retriever=wikipedia_retriever,
172
  reader_kwargs={"dataset_kwargs": {"use_nme": True}},
173
  ),
 
280
  allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
281
  allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
282
 
283
+ @spaces.GPU
284
  def text_analysis(Text, Model, Relation_Threshold, Window_Size, Window_Stride):
285
  global loaded_model
286
  if Model is None: