relik-ie commited on
Commit
b6816e1
1 Parent(s): d0e5e28

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +396 -0
app.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ import os
3
+
4
+ import gradio as gr
5
+ import spacy
6
+ from pyvis.network import Network
7
+ from spacy import displacy
8
+ from spacy.tokens import Doc, Span
9
+
10
+ from relik.common.utils import CONFIG_NAME, from_cache
11
+ from relik.inference.annotator import Relik
12
+ from relik.inference.serve.frontend.utils import get_random_color
13
+ from relik.retriever.pytorch_modules.model import GoldenRetriever
14
+ from relik.retriever.indexers.inmemory import InMemoryDocumentIndex
15
+ from relik.inference.data.objects import TaskType
16
+
17
+ LOGO = """
18
+ <div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
19
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/5f0b462819cb630495b814d7/NJPRSmlwi6sY1qQEIcgRV.png" style="max-width: 850px; height: auto;">
20
+ </div>
21
+ """
22
+
23
+ DESCRIPTION = """
24
+ <div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
25
+ <a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a> &nbsp; &nbsp;
26
+ <a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a> &nbsp; &nbsp;
27
+ <a href="https://arxiv.org/abs/placeholder"><img src="https://img.shields.io/badge/arXiv-placeholder-b31b1b.svg"></a>
28
+ </div>
29
+ <br>
30
+ <div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
31
+ <a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> &nbsp; &nbsp;
32
+ <a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a> &nbsp; &nbsp;
33
+ <a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a>
34
+ </div>
35
+ <br>
36
+ <div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
37
+ <a href="https://nlp.uniroma1.it/"><img src="https://img.shields.io/badge/Sapienza NLP-802433.svg?logo="></a> &nbsp; &nbsp;
38
+ <a href="https://babelscape.it/"><img src="https://img.shields.io/badge/Babelscape-215489.svg?logo="></a>
39
+ </div>
40
+ <br>
41
+
42
+ <div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
43
+
44
+ <h2>
45
+ Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
46
+ <br>
47
+ <span style="font-size: 0.9em;">
48
+ A blazing fast and lightweight Information Extraction model for Entity Linking and Relation Extraction.
49
+ </span>
50
+ <br>
51
+ <span style="color: #919191; font-weight: 400; font-size: 0.8em;">
52
+ <a href="https://riccardorlando.xyz/" style="color: #919191;" target="_blank">Riccardo Orlando</a>,
53
+ <a href="https://littlepea13.github.io/" style="color: #919191;" target="_blank">Pere-Lluís Huguet Cabot</a>,
54
+ <a href="https://edobobo.github.io/" style="color: #919191;" target="_blank">Edoardo Barba</a>,
55
+ and <a href="https://www.diag.uniroma1.it/navigli/" style="color: #919191;" target="_blank">Roberto Navigli</a>,
56
+ </span>
57
+ <h2>
58
+ </div>
59
+ """
60
+
61
+ INSTRUCTION = """
62
+ ## Use it locally
63
+
64
+ Installation from PyPI
65
+
66
+ ```bash
67
+ pip install relik
68
+ ```
69
+
70
+ ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**.
71
+ It is composed of two main components: a **retriever** and a **reader**.
72
+ The retriever is responsible for retrieving relevant documents from a large collection of documents,
73
+ while the reader is responsible for extracting entities and relations from the retrieved documents.
74
+ ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline.
75
+
76
+ Here is an example of how to use ReLiK for Entity Linking:
77
+
78
+ ```python
79
+ from relik import Relik
80
+ from relik.inference.data.objects import RelikOutput
81
+
82
+ relik = Relik.from_pretrained("sapienzanlp/relik-entity-linking-large")
83
+ relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
84
+
85
+ # RelikOutput(
86
+ # text="Michael Jordan was one of the best players in the NBA.",
87
+ # tokens=['Michael', 'Jordan', 'was', 'one', 'of', 'the', 'best', 'players', 'in', 'the', 'NBA', '.'],
88
+ # id=0,
89
+ # spans=[
90
+ # Span(start=0, end=14, label="Michael Jordan", text="Michael Jordan"),
91
+ # Span(start=50, end=53, label="National Basketball Association", text="NBA"),
92
+ # ],
93
+ # triplets=[],
94
+ # candidates=Candidates(
95
+ # span=[
96
+ # [
97
+ # [
98
+ # {"text": "Michael Jordan", "id": 4484083},
99
+ # {"text": "National Basketball Association", "id": 5209815},
100
+ # {"text": "Walter Jordan", "id": 2340190},
101
+ # {"text": "Jordan", "id": 3486773},
102
+ # {"text": "50 Greatest Players in NBA History", "id": 1742909},
103
+ # ...
104
+ # ]
105
+ # ]
106
+ # ]
107
+ # ),
108
+ # )
109
+ ```
110
+
111
+ and for Relation Extraction:
112
+
113
+ ```python
114
+ from relik import Relik
115
+ from relik.inference.data.objects import RelikOutput
116
+
117
+ relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-large")
118
+ relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
119
+ ```
120
+
121
+ For more information, please refer to the [source code](https://github.com/SapienzaNLP/relik/).
122
+ """
123
+
124
+ wikipedia_retriever = GoldenRetriever("relik-ie/encoder-e5-base-v2-wikipedia")
125
+ wikipedia_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-base-v2-wikipedia-index")
126
+
127
+ wikidata_retriever = GoldenRetriever("relik-ie/encoder-e5-small-v2-wikipedia-relations")
128
+ wikidata_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-small-v2-wikipedia-relations-index")
129
+
130
+ relik_available_models = [
131
+ "sapienzanlp/relik-entity-linking-large",
132
+ "relik-ie/relik-reader-small-cie-wikipedia",
133
+ "relik-ie/relik-relation-extraction-large-wikipedia",
134
+ "relik-ie/relik-entity-linking-large-robust",
135
+ ]
136
+ # demo_index_el = {
137
+ # "span": {
138
+ # "_target_": "relik.retriever.indexers.inmemory.InMemoryDocumentIndex.from_pretrained",
139
+ # "name_or_path": "sapienzanlp/relik-retriever-e5-base-v2-aida-blink-wikipedia-2Mpopular-index",
140
+ # }
141
+ # }
142
+ relik_models = {
143
+ "sapienzanlp/relik-entity-linking-large": Relik.from_pretrained(
144
+ "sapienzanlp/relik-entity-linking-large",
145
+ index_precision="bf16",
146
+ index=wikipedia_index,
147
+ retriever=wikipedia_retriever,
148
+ reader_kwargs={"dataset_kwargs": {"use_nme": True}},
149
+ ),
150
+ "relik-ie/relik-reader-small-cie-wikipedia": Relik.from_pretrained(
151
+ "relik-ie/relik-reader-small-cie-wikipedia",
152
+ index_precision="bf16",
153
+ # reader="/media/data/relik/models/PereLluis13/relik-reader-deberta-large-wikipedia-aida-full-interleave",
154
+ device="cuda",
155
+ index={
156
+ TaskType.SPAN: wikipedia_index,
157
+ TaskType.TRIPLET: wikidata_index,
158
+ },
159
+ retriever={
160
+ TaskType.SPAN: wikipedia_retriever,
161
+ TaskType.TRIPLET: wikidata_retriever,
162
+ },
163
+ reader_kwargs={"dataset_kwargs": {"use_nme": True}},
164
+ ),
165
+ "relik-ie/relik-relation-extraction-large-wikipedia": Relik.from_pretrained(
166
+ "relik-ie/relik-relation-extraction-large-wikipedia",
167
+ index_precision="bf16",
168
+ index=wikidata_index,
169
+ retriever=wikidata_retriever,
170
+ device="cuda",
171
+ ),
172
+ "relik-ie/relik-entity-linking-large-robust": Relik.from_pretrained(
173
+ "relik-ie/relik-entity-linking-large-robust",
174
+ index_precision="bf16",
175
+ index=wikipedia_index,
176
+ retriever=wikipedia_retriever,
177
+ reader_kwargs={"dataset_kwargs": {"use_nme": True}},
178
+ ),
179
+ }
180
+
181
+
182
+ def get_span_annotations(response, doc):
183
+ dict_ents = {}
184
+ el_link_wrapper = (
185
+ "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='https://en.wikipedia.org/wiki/{}' style='color: #414141'><i class='fa-brands fa-wikipedia-w fa-xs' style='color: #414141'></i> {}</a>"
186
+ )
187
+
188
+ spans = []
189
+ for idx, span in enumerate(response.spans):
190
+ spans.append(
191
+ Span(
192
+ doc,
193
+ span.start,
194
+ span.end,
195
+ el_link_wrapper.format(
196
+ span.label.replace(" ", "_"), span.label
197
+ ) if span.label != "--NME--" else "--NME--",
198
+ # kb_id=span.label.replace(" ", "_")
199
+ )
200
+ )
201
+ dict_ents[(span.start, span.end)] = (
202
+ span.label + str(idx),
203
+ doc[span.start : span.end].text,
204
+ span.label,
205
+ span.label.replace(" ", "_"),
206
+ )
207
+ colors = get_random_color(set([span.label_ for span in spans]))
208
+ return spans, colors, dict_ents
209
+
210
+ def generate_graph(spans, response, colors, dict_ents, bgcolor="#111827", font_color="white"):
211
+ g = Network(
212
+ width="720px",
213
+ height="600px",
214
+ directed=True,
215
+ notebook=False,
216
+ bgcolor=bgcolor,
217
+ font_color=font_color,
218
+ )
219
+ g.barnes_hut(
220
+ gravity=-3000,
221
+ central_gravity=0.3,
222
+ spring_length=50,
223
+ spring_strength=0.001,
224
+ damping=0.09,
225
+ overlap=0,
226
+ )
227
+
228
+ for ent in spans:
229
+ # if not NME use title:
230
+ if dict_ents[(ent.start, ent.end)][2] != "--NME--":
231
+ g.add_node(
232
+ dict_ents[(ent.start, ent.end)][2],
233
+ label=dict_ents[(ent.start, ent.end)][2],
234
+ color=colors[ent.label_],
235
+ title=dict_ents[(ent.start, ent.end)][2],
236
+ size=15,
237
+ labelHighlightBold=True,
238
+ )
239
+ else:
240
+ g.add_node(
241
+ ent.text,
242
+ label=ent.text,
243
+ color=colors[ent.label_],
244
+ title=ent.text,
245
+ size=15,
246
+ labelHighlightBold=True,
247
+ )
248
+ seen_rels = set()
249
+ for rel in response.triplets:
250
+ if dict_ents[(rel.subject.start, rel.subject.end)][2] == "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] == "--NME--":
251
+ if (rel.subject.text, rel.object.text, rel.label) in seen_rels:
252
+ continue
253
+ elif dict_ents[(rel.subject.start, rel.subject.end)][2] == "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--":
254
+ if (rel.subject.text, dict_ents[(rel.object.start, rel.object.end)][2], rel.label) in seen_rels:
255
+ continue
256
+ elif dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] == "--NME--":
257
+ if (dict_ents[(rel.subject.start, rel.subject.end)][2], rel.object.text, rel.label) in seen_rels:
258
+ continue
259
+ else:
260
+ if (dict_ents[(rel.subject.start, rel.subject.end)][2], dict_ents[(rel.object.start, rel.object.end)][2], rel.label) in seen_rels:
261
+ continue
262
+
263
+ g.add_edge(
264
+ dict_ents[(rel.subject.start, rel.subject.end)][2] if dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" else dict_ents[(rel.subject.start, rel.subject.end)][1],
265
+ dict_ents[(rel.object.start, rel.object.end)][2] if dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--" else dict_ents[(rel.object.start, rel.object.end)][1],
266
+ label=rel.label,
267
+ title=rel.label,
268
+ )
269
+ if dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--":
270
+ seen_rels.add((dict_ents[(rel.subject.start, rel.subject.end)][2], dict_ents[(rel.object.start, rel.object.end)][2], rel.label))
271
+ elif dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] == "--NME--":
272
+ seen_rels.add((dict_ents[(rel.subject.start, rel.subject.end)][2], rel.object.text, rel.label))
273
+ elif dict_ents[(rel.subject.start, rel.subject.end)][2] == "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--":
274
+ seen_rels.add((rel.subject.text, dict_ents[(rel.object.start, rel.object.end)][2], rel.label))
275
+ else:
276
+ seen_rels.add((rel.subject.text, rel.object.text, rel.label))
277
+ # g.show(filename, notebook=False)
278
+ html = g.generate_html()
279
+ # need to remove ' from HTML
280
+ html = html.replace("'", '"')
281
+
282
+ return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
283
+ display-capture; encrypted-media;" sandbox="allow-modals allow-forms
284
+ allow-scripts allow-same-origin allow-popups
285
+ allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
286
+ allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
287
+
288
+
289
+ def text_analysis(Text, Model, Relation_Threshold, Window_Size, Window_Stride):
290
+ global loaded_model
291
+ if Model is None:
292
+ return "", ""
293
+ # if loaded_model is None or loaded_model["key"] != Model:
294
+ # relik = Relik.from_pretrained(Model, index_precision="bf16")
295
+ # loaded_model = {"key": Model, "model": relik}
296
+ # else:
297
+ # relik = loaded_model["model"]
298
+ if Model not in relik_models:
299
+ raise ValueError(f"Model {Model} not found.")
300
+ relik = relik_models[Model]
301
+ # spacy for span visualization
302
+ nlp = spacy.blank("xx")
303
+ annotated_text = relik(Text, annotation_type="word", num_workers=0, remove_nmes= False, relation_threshold = Relation_Threshold, window_size=Window_Size, window_stride=Window_Stride)
304
+ doc = Doc(nlp.vocab, words=[token.text for token in annotated_text.tokens])
305
+ spans, colors, dict_ents = get_span_annotations(response=annotated_text, doc=doc)
306
+ doc.spans["sc"] = spans
307
+
308
+ # build the EL display
309
+ display_el = displacy.render(doc, style="span", options={"colors": colors})#, "kb_url_template": "https://en.wikipedia.org/wiki/{}"})
310
+ display_el = display_el.replace("\n", " ")
311
+ # heuristic, prevents split of annotation decorations
312
+ display_el = display_el.replace(
313
+ "border-radius: 0.35em;",
314
+ "border-radius: 0.35em; white-space: nowrap;",
315
+ )
316
+ display_el = display_el.replace(
317
+ "span style",
318
+ "span id='el' style",
319
+ )
320
+ display_re = ""
321
+ if annotated_text.triplets:
322
+ # background_color should be the same as the background of the page
323
+ display_re = generate_graph(spans, annotated_text, colors, dict_ents)
324
+ return display_el, display_re
325
+
326
+
327
+ theme = theme = gr.themes.Base(
328
+ primary_hue="rose",
329
+ secondary_hue="rose",
330
+ text_size="lg",
331
+ # font=[gr.themes.GoogleFont("Montserrat"), "Arial", "sans-serif"],
332
+ )
333
+
334
+ css = """
335
+ h1 {
336
+ text-align: center;
337
+ display: block;
338
+ }
339
+ mark {
340
+ color: black;
341
+ }
342
+ #el {
343
+ white-space: nowrap;
344
+ }
345
+ """
346
+
347
+ with gr.Blocks(fill_height=True, css=css, theme=theme) as demo:
348
+ # check if demo is running in dark mode
349
+ gr.Markdown(LOGO)
350
+ gr.Markdown(DESCRIPTION)
351
+ gr.Interface(
352
+ text_analysis,
353
+ [
354
+ gr.Textbox(label="Input Text", placeholder="Enter sentence here..."),
355
+ gr.Dropdown(
356
+ relik_available_models,
357
+ value=relik_available_models[0],
358
+ label="Relik Model",
359
+ ),
360
+ gr.Slider(
361
+ minimum=0,
362
+ maximum=1,
363
+ step=0.05,
364
+ value=0.5,
365
+ label="Relation Threshold",
366
+ info="Minimum confidence for relation extraction (Only for RE and cIE)",
367
+ ),
368
+ gr.Slider(
369
+ minimum=16,
370
+ maximum=128,
371
+ step=16,
372
+ value=32,
373
+ label="Window Size",
374
+ info="Window size for the sliding window",
375
+ ),
376
+ gr.Slider(
377
+ minimum=8,
378
+ maximum=64,
379
+ step=8,
380
+ value=16,
381
+ label="Window Stride",
382
+ info="Window stride for the sliding window",
383
+ ),
384
+ ],
385
+ [gr.HTML(label="Entities"), gr.HTML(label="Relations")],
386
+ examples=[
387
+ ["Avram Noam Chomsky born December 7, 1928) is an American professor and public intellectual known for his work in linguistics, political activism, and social criticism. Sometimes called 'the father of modern linguistics', Chomsky is also a major figure in analytic philosophy and one of the founders of the field of cognitive science. He is a laureate professor of linguistics at the University of Arizona and an institute professor emeritus at the Massachusetts Institute of Technology (MIT). Among the most cited living authors, Chomsky has written more than 150 books on topics such as linguistics, war, and politics. In addition to his work in linguistics, since the 1960s Chomsky has been an influential voice on the American left as a consistent critic of U.S. foreign policy, contemporary capitalism, and corporate influence on political institutions and the media."],
388
+ ["'Bella ciao' (Italian pronunciation: [ˈbɛlla ˈtʃaːo]; 'Goodbye beautiful') is an Italian song dedicated to the partisans of the Italian resistance, which fought against the occupying troops of Nazi Germany and the collaborationist Fascist forces during the liberation of Italy. It was based on a folk song of the late 19th century, sung by female workers of the paddy fields in Northern Italy (mondine) in protest against harsh working conditions. Versions of 'Bella ciao' continue to be sung worldwide as a hymn of resistance."],
389
+ ],
390
+ allow_flagging="never",
391
+ )
392
+ gr.Markdown("")
393
+ gr.Markdown(INSTRUCTION)
394
+
395
+ if __name__ == "__main__":
396
+ demo.launch()