File size: 2,257 Bytes
bdf3244
 
 
 
 
 
 
 
a144977
bdf3244
 
 
 
 
 
a144977
bdf3244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import cv2
import requests
import os
import torch 
import numpy as np
from ultralytics import YOLO

model = torch.hub.load('ultralytics/yolov5', 'hi', pretrained=True)

area = [(48,430), (18, 515), (407,485), (750,425), (690,370)]
total_space = 12
count=0

def show_preds_video():
    cap = cv2.VideoCapture('V111.mp4')
    count=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if not ret:
            break
        count += 1
        if count % 2 != 0:
            continue

        frame=cv2.resize(frame,(1020,600))
        frame_copy = frame.copy()
        Vehicle_cnt = 0

        results=model(frame)
        for index, row in results.pandas().xyxy[0].iterrows():
            x1 = int(row['xmin'])
            y1 = int(row['ymin'])
            x2 = int(row['xmax'])
            y2 = int(row['ymax'])
            d=(row['name'])

            cx=int(x1+x2)//2
            cy=int(y1+y2)//2

            if ('car' or 'truck') in d:
                results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False)
                if results >0:
                        cv2.rectangle(frame_copy,(x1,y1),(x2,y2),(0,0,255),2)
                        cv2.putText(frame_copy,str(d),(x1,y1),cv2.FONT_HERSHEY_PLAIN,2,(255,255,0),2)
                        Vehicle_cnt += 1


        
        free_space = total_space - Vehicle_cnt
        cv2.putText(frame_copy, ("Free space: " + str(free_space)), (50,50) ,cv2.FONT_HERSHEY_PLAIN,2,(0,255,0),2)

        cv2.putText(frame_copy, str(str("vehicles: ")+ str(Vehicle_cnt) ), (50,85) ,cv2.FONT_HERSHEY_PLAIN,2,(0,255,0),2)
        
        cv2.polylines(frame_copy, [np.array(area, np.int32)], True, (0,255,0), 2) 

        yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)


inputs_video = [
    #gr.components.Video(type="filepath", label="Input Video"),

]
outputs_video = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_video = gr.Interface(
    fn=show_preds_video,
    inputs=inputs_video,
    outputs=outputs_video,
    title="Parking counter",
    description="Click submit !!!'",
    #examples=video_path,
    cache_examples=False,
)

gr.TabbedInterface(
    [interface_video],
    tab_names=['Video inference']
).queue().launch()