neindochoh commited on
Commit
240b862
1 Parent(s): b21f1e8

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +20 -0
  2. README.md +7 -6
  3. run.py +93 -0
Dockerfile ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10
2
+
3
+ ARG SPOTLIGHT_VERSION=1.5.0rc1
4
+
5
+ RUN useradd -m -u 1000 user
6
+
7
+ USER user
8
+
9
+ ENV HOME=/home/user \
10
+ PATH=/home/user/.local/bin:$PATH
11
+
12
+ WORKDIR $HOME/app
13
+
14
+ ENV SPOTLIGHT_VERSION=$SPOTLIGHT_VERSION
15
+ RUN pip install --no-cache-dir --upgrade pip setuptools wheel
16
+ RUN pip install --no-cache-dir --upgrade "renumics-spotlight==${SPOTLIGHT_VERSION}"
17
+
18
+ COPY --chown=user --chmod=0755 run.py .
19
+
20
+ CMD ["./run.py"]
README.md CHANGED
@@ -1,10 +1,11 @@
1
  ---
2
- title: Spotlight Cifar10
3
- emoji: 🔥
4
  colorFrom: indigo
5
- colorTo: purple
6
  sdk: docker
 
 
7
  pinned: false
8
- ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Spotlight cifar10[train[:100]]
3
+ emoji: 🔬
4
  colorFrom: indigo
5
+ colorTo: green
6
  sdk: docker
7
+ app_port: 7860
8
+ datasets: [cifar10, renumics/spotlight-cifar10-enrichment]
9
  pinned: false
10
+ license: mit
11
+ ---
 
run.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Serve a Hugging Face dataset.
4
+ """
5
+
6
+ import dataclasses
7
+ import os
8
+ from typing import Optional
9
+
10
+ import datasets
11
+ import huggingface_hub
12
+ from renumics import spotlight
13
+
14
+
15
+ def login() -> None:
16
+ """
17
+ Login to Hugging Face Hub.
18
+ """
19
+ if token := os.environ.get("HF_TOKEN"):
20
+ huggingface_hub.login(token)
21
+
22
+
23
+ @dataclasses.dataclass
24
+ class HFSettings:
25
+ """
26
+ Hugging Face settings.
27
+ """
28
+
29
+ dataset: str
30
+ subset: Optional[str] = None
31
+ split: Optional[str] = None
32
+ revision: Optional[str] = None
33
+
34
+ enrichment: Optional[str] = None
35
+
36
+ @classmethod
37
+ def from_environ(cls) -> "HFSettings":
38
+ """
39
+ Parse Hugging Face settings from environment.
40
+ """
41
+ dataset = os.environ.get("HF_DATASET") or None
42
+ if dataset is None:
43
+ raise RuntimeError(
44
+ "Desired Hugging Face dataset must be set as `HF_DATASET` "
45
+ "environment variable."
46
+ )
47
+ return cls(
48
+ dataset,
49
+ os.environ.get("HF_SUBSET") or None,
50
+ os.environ.get("HF_SPLIT") or None,
51
+ os.environ.get("HF_REVISION") or None,
52
+ os.environ.get("HF_ENRICHMENT") or None,
53
+ )
54
+
55
+ def __str__(self) -> str:
56
+ return f"{self.dataset}[subset={self.subset},split={self.split},revision={self.revision}]"
57
+
58
+
59
+ if __name__ == "__main__":
60
+ """
61
+ Load and serve the given Hugging Face dataset.
62
+ """
63
+ login()
64
+
65
+ hf_settings = HFSettings.from_environ()
66
+ print(f"Loading Hugging Face dataset {hf_settings}.")
67
+ ds = datasets.load_dataset(
68
+ hf_settings.dataset,
69
+ hf_settings.subset,
70
+ split=hf_settings.split,
71
+ revision=hf_settings.revision,
72
+ )
73
+ if hf_settings.enrichment is not None:
74
+ ds_enrichment = datasets.load_dataset(
75
+ hf_settings.enrichment,
76
+ hf_settings.subset,
77
+ split=hf_settings.split,
78
+ revision=hf_settings.revision,
79
+ )
80
+ if len(ds_enrichment) != len(ds):
81
+ raise RuntimeError(
82
+ f"Length of the enrichment dataset ({len(ds_enrichment)}) "
83
+ f"mismatches length of the original dataset ({len(ds)})"
84
+ )
85
+ ds = datasets.concatenate_datasets([ds, ds_enrichment], split=ds.split, axis=1)
86
+ if not isinstance(ds, datasets.Dataset):
87
+ raise TypeError(
88
+ f"Loaded Hugging Face dataset is of type {type(ds)} instead of "
89
+ "`datasets.Dataset`. Did you forget to specify subset and/or split "
90
+ "(use environment variables `HF_SUBSET` and `HF_SPLIT` respective)?"
91
+ )
92
+ print(f"Serving Hugging Face dataset {hf_settings}.")
93
+ spotlight.show(ds, host="0.0.0.0", port=7860, wait="forever")