Spaces:
reon314
/
Runtime error

llm / api /app /clients /GoogleClient.js
Marco Beretta
LibreChat upload repo
3b6afc0
raw
history blame
9.26 kB
const BaseClient = require('./BaseClient');
const { google } = require('googleapis');
const { Agent, ProxyAgent } = require('undici');
const {
encoding_for_model: encodingForModel,
get_encoding: getEncoding,
} = require('@dqbd/tiktoken');
const tokenizersCache = {};
class GoogleClient extends BaseClient {
constructor(credentials, options = {}) {
super('apiKey', options);
this.client_email = credentials.client_email;
this.project_id = credentials.project_id;
this.private_key = credentials.private_key;
this.sender = 'PaLM2';
this.setOptions(options);
}
/* Google/PaLM2 specific methods */
constructUrl() {
return `https://us-central1-aiplatform.googleapis.com/v1/projects/${this.project_id}/locations/us-central1/publishers/google/models/${this.modelOptions.model}:predict`;
}
async getClient() {
const scopes = ['https://www.googleapis.com/auth/cloud-platform'];
const jwtClient = new google.auth.JWT(this.client_email, null, this.private_key, scopes);
jwtClient.authorize((err) => {
if (err) {
console.log(err);
throw err;
}
});
return jwtClient;
}
/* Required Client methods */
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
// nested options aren't spread properly, so we need to do this manually
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
// now we can merge options
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
this.options.examples = this.options.examples.filter(
(obj) => obj.input.content !== '' && obj.output.content !== '',
);
const modelOptions = this.options.modelOptions || {};
this.modelOptions = {
...modelOptions,
// set some good defaults (check for undefined in some cases because they may be 0)
model: modelOptions.model || 'chat-bison',
temperature: typeof modelOptions.temperature === 'undefined' ? 0.2 : modelOptions.temperature, // 0 - 1, 0.2 is recommended
topP: typeof modelOptions.topP === 'undefined' ? 0.95 : modelOptions.topP, // 0 - 1, default: 0.95
topK: typeof modelOptions.topK === 'undefined' ? 40 : modelOptions.topK, // 1-40, default: 40
// stop: modelOptions.stop // no stop method for now
};
this.isChatModel = this.modelOptions.model.startsWith('chat-');
const { isChatModel } = this;
this.isTextModel = this.modelOptions.model.startsWith('text-');
const { isTextModel } = this;
this.maxContextTokens = this.options.maxContextTokens || (isTextModel ? 8000 : 4096);
// The max prompt tokens is determined by the max context tokens minus the max response tokens.
// Earlier messages will be dropped until the prompt is within the limit.
this.maxResponseTokens = this.modelOptions.maxOutputTokens || 1024;
this.maxPromptTokens =
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
this.maxPromptTokens + this.maxResponseTokens
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
);
}
this.userLabel = this.options.userLabel || 'User';
this.modelLabel = this.options.modelLabel || 'Assistant';
if (isChatModel) {
// Use these faux tokens to help the AI understand the context since we are building the chat log ourselves.
// Trying to use "<|im_start|>" causes the AI to still generate "<" or "<|" at the end sometimes for some reason,
// without tripping the stop sequences, so I'm using "||>" instead.
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
} else if (isTextModel) {
this.startToken = '<|im_start|>';
this.endToken = '<|im_end|>';
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true, {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
});
} else {
// Previously I was trying to use "<|endoftext|>" but there seems to be some bug with OpenAI's token counting
// system that causes only the first "<|endoftext|>" to be counted as 1 token, and the rest are not treated
// as a single token. So we're using this instead.
this.startToken = '||>';
this.endToken = '';
try {
this.gptEncoder = this.constructor.getTokenizer(this.modelOptions.model, true);
} catch {
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true);
}
}
if (!this.modelOptions.stop) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`\n${this.userLabel}:`);
stopTokens.push('<|diff_marker|>');
// I chose not to do one for `modelLabel` because I've never seen it happen
this.modelOptions.stop = stopTokens;
}
if (this.options.reverseProxyUrl) {
this.completionsUrl = this.options.reverseProxyUrl;
} else {
this.completionsUrl = this.constructUrl();
}
return this;
}
getMessageMapMethod() {
return ((message) => ({
author: message?.author ?? (message.isCreatedByUser ? this.userLabel : this.modelLabel),
content: message?.content ?? message.text,
})).bind(this);
}
buildMessages(messages = []) {
const formattedMessages = messages.map(this.getMessageMapMethod());
let payload = {
instances: [
{
messages: formattedMessages,
},
],
parameters: this.options.modelOptions,
};
if (this.options.promptPrefix) {
payload.instances[0].context = this.options.promptPrefix;
}
if (this.options.examples.length > 0) {
payload.instances[0].examples = this.options.examples;
}
/* TO-DO: text model needs more context since it can't process an array of messages */
if (this.isTextModel) {
payload.instances = [
{
prompt: messages[messages.length - 1].content,
},
];
}
if (this.options.debug) {
console.debug('GoogleClient buildMessages');
console.dir(payload, { depth: null });
}
return { prompt: payload };
}
async getCompletion(payload, abortController = null) {
if (!abortController) {
abortController = new AbortController();
}
const { debug } = this.options;
const url = this.completionsUrl;
if (debug) {
console.debug();
console.debug(url);
console.debug(this.modelOptions);
console.debug();
}
const opts = {
method: 'POST',
agent: new Agent({
bodyTimeout: 0,
headersTimeout: 0,
}),
signal: abortController.signal,
};
if (this.options.proxy) {
opts.agent = new ProxyAgent(this.options.proxy);
}
const client = await this.getClient();
const res = await client.request({ url, method: 'POST', data: payload });
console.dir(res.data, { depth: null });
return res.data;
}
getSaveOptions() {
return {
promptPrefix: this.options.promptPrefix,
modelLabel: this.options.modelLabel,
...this.modelOptions,
};
}
getBuildMessagesOptions() {
// console.log('GoogleClient doesn\'t use getBuildMessagesOptions');
}
async sendCompletion(payload, opts = {}) {
console.log('GoogleClient: sendcompletion', payload, opts);
let reply = '';
let blocked = false;
try {
const result = await this.getCompletion(payload, opts.abortController);
blocked = result?.predictions?.[0]?.safetyAttributes?.blocked;
reply =
result?.predictions?.[0]?.candidates?.[0]?.content ||
result?.predictions?.[0]?.content ||
'';
if (blocked === true) {
reply = `Google blocked a proper response to your message:\n${JSON.stringify(
result.predictions[0].safetyAttributes,
)}${reply.length > 0 ? `\nAI Response:\n${reply}` : ''}`;
}
if (this.options.debug) {
console.debug('result');
console.debug(result);
}
} catch (err) {
console.error(err);
}
if (!blocked) {
await this.generateTextStream(reply, opts.onProgress, { delay: 0.5 });
}
return reply.trim();
}
/* TO-DO: Handle tokens with Google tokenization NOTE: these are required */
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
}
getTokenCount(text) {
return this.gptEncoder.encode(text, 'all').length;
}
}
module.exports = GoogleClient;