Gosse Minnema
Add sociofillmore code, load dataset via private dataset repo
b11ac48
raw
history blame
19 kB
import os
import re
from typing import Dict, Iterable, List, Optional, Tuple
import json
import random
import argparse
from allennlp.data.fields.field import Field
from allennlp.data.fields.sequence_field import SequenceField
from allennlp.models.model import Model
from allennlp.nn.util import get_text_field_mask
from allennlp.predictors.predictor import Predictor
import pandas as pd
import spacy
import torch
from sklearn.preprocessing import MultiLabelBinarizer
from allennlp.common.util import pad_sequence_to_length
from allennlp.data import TextFieldTensors
from allennlp.data.vocabulary import Vocabulary
from allennlp.data import DatasetReader, TokenIndexer, Instance, Token
from allennlp.data.fields import TextField, LabelField
from allennlp.data.token_indexers.pretrained_transformer_indexer import (
PretrainedTransformerIndexer,
)
from allennlp.data.tokenizers.pretrained_transformer_tokenizer import (
PretrainedTransformerTokenizer,
)
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders.basic_text_field_embedder import (
BasicTextFieldEmbedder,
)
from allennlp.modules.token_embedders.pretrained_transformer_embedder import (
PretrainedTransformerEmbedder,
)
from allennlp.modules.seq2vec_encoders.bert_pooler import BertPooler
from allennlp.modules.seq2vec_encoders.cls_pooler import ClsPooler
from allennlp.training.checkpointer import Checkpointer
from allennlp.training.gradient_descent_trainer import GradientDescentTrainer
from allennlp.data.data_loaders.simple_data_loader import SimpleDataLoader
from allennlp.training.optimizers import AdamOptimizer
from allennlp.predictors.text_classifier import TextClassifierPredictor
from allennlp.training.callbacks.tensorboard import TensorBoardCallback
from torch import nn
from torch.nn.functional import binary_cross_entropy_with_logits
random.seed(1986)
SEQ_LABELS = ["humansMentioned", "vehiclesMentioned", "eventVerb", "activeEventVerb"]
# adapted from bert-for-framenet project
class SequenceMultiLabelField(Field):
def __init__(self,
labels: List[List[str]],
sequence_field: SequenceField,
binarizer: MultiLabelBinarizer,
label_namespace: str
):
self.labels = labels
self._indexed_labels = None
self._label_namespace = label_namespace
self.sequence_field = sequence_field
self.binarizer = binarizer
@staticmethod
def retokenize_tags(tags: List[List[str]],
offsets: List[Tuple[int, int]],
wp_primary_token: str = "last",
wp_secondary_tokens: str = "empty",
empty_value=lambda: []
) -> List[List[str]]:
tags_per_wordpiece = [
empty_value() # [CLS]
]
for i, (off_start, off_end) in enumerate(offsets):
tag = tags[i]
# put a tag on the first wordpiece corresponding to the word token
# e.g. "hello" --> "he" + "##ll" + "##o" --> 2 extra tokens
# TAGS: [..., TAG, None, None, ...]
num_extra_tokens = off_end - off_start
if wp_primary_token == "first":
tags_per_wordpiece.append(tag)
if wp_secondary_tokens == "repeat":
tags_per_wordpiece.extend(num_extra_tokens * [tag])
else:
tags_per_wordpiece.extend(num_extra_tokens * [empty_value()])
if wp_primary_token == "last":
tags_per_wordpiece.append(tag)
tags_per_wordpiece.append(empty_value()) # [SEP]
return tags_per_wordpiece
def count_vocab_items(self, counter: Dict[str, Dict[str, int]]):
for label_list in self.labels:
for label in label_list:
counter[self._label_namespace][label] += 1
def get_padding_lengths(self) -> Dict[str, int]:
return {"num_tokens": self.sequence_field.sequence_length()}
def index(self, vocab: Vocabulary):
indexed_labels: List[List[int]] = []
for sentence_labels in self.labels:
sentence_indexed_labels = []
for label in sentence_labels:
try:
sentence_indexed_labels.append(
vocab.get_token_index(label, self._label_namespace))
except KeyError:
print(f"[WARNING] Ignore unknown label {label}")
indexed_labels.append(sentence_indexed_labels)
self._indexed_labels = indexed_labels
def as_tensor(self, padding_lengths: Dict[str, int]) -> torch.Tensor:
# binarize
binarized_seq = self.binarizer.transform(self._indexed_labels).tolist()
# padding
desired_num_tokens = padding_lengths["num_tokens"]
padded_tags = pad_sequence_to_length(binarized_seq, desired_num_tokens,
default_value=lambda: list(self.binarizer.transform([[]])[0]))
tensor = torch.tensor(padded_tags, dtype=torch.float)
return tensor
def empty_field(self) -> 'Field':
field = SequenceMultiLabelField(
[], self.sequence_field.empty_field(), self.binarizer, self._label_namespace)
field._indexed_labels = []
return field
# adapted from bert-for-framenet project
class MultiSequenceLabelModel(Model):
def __init__(self, embedder: PretrainedTransformerEmbedder, decoder_output_size: int, hidden_size: int, vocab: Vocabulary, embedding_size: int = 768):
super().__init__(vocab)
self.embedder = embedder
self.out_features = decoder_output_size
self.hidden_size = hidden_size
self.layers = nn.Sequential(
nn.Linear(in_features=embedding_size,
out_features=self.hidden_size),
nn.ReLU(),
nn.Linear(in_features=self.hidden_size,
out_features=self.out_features)
)
def forward(self, tokens: TextFieldTensors, label: Optional[torch.FloatTensor] = None):
embeddings = self.embedder(tokens["token_ids"])
mask = get_text_field_mask(tokens).float()
tag_logits = self.layers(embeddings)
mask = mask.reshape(mask.shape[0], mask.shape[1], 1).repeat(1, 1, self.out_features)
output = {"tag_logits": tag_logits}
if label is not None:
loss = binary_cross_entropy_with_logits(tag_logits, label, mask)
output["loss"] = loss
def get_metrics(self, _) -> Dict[str, float]:
return {}
def make_human_readable(self,
prediction,
label_namespace,
threshold=0.2,
sigmoid=True
) -> Tuple[List[str], Optional[List[float]]]:
if sigmoid:
prediction = torch.sigmoid(prediction)
predicted_labels: List[List[str]] = [[] for _ in range(len(prediction))]
# get all predictions with a positive probability
for coord in torch.nonzero(prediction > threshold):
label = self.vocab.get_token_from_index(int(coord[1]), label_namespace)
predicted_labels[coord[0]].append(f"{label}:{prediction[coord[0], coord[1]]:.3f}")
str_predictions: List[str] = []
for label_list in predicted_labels:
str_predictions.append("|".join(label_list) or "_")
return str_predictions
class TrafficBechdelReader(DatasetReader):
def __init__(self, token_indexers, tokenizer, binarizer):
self.token_indexers = token_indexers
self.tokenizer: PretrainedTransformerTokenizer = tokenizer
self.binarizer = binarizer
self.orig_data = []
super().__init__()
def _read(self, file_path) -> Iterable[Instance]:
self.orig_data.clear()
with open(file_path, encoding="utf-8") as f:
for line in f:
# skip any empty lines
if not line.strip():
continue
sentence_parts = line.lstrip("[").rstrip("]").split(",")
token_txts = []
token_mlabels = []
for sp in sentence_parts:
sp_txt, sp_lbl_str = sp.split(":")
if sp_lbl_str == "[]":
sp_lbls = []
else:
sp_lbls = sp_lbl_str.lstrip("[").rstrip("]").split("|")
# if the text is a WordNet thingy
wn_match = re.match(r"^(.+)-n-\d+$", sp_txt)
if wn_match:
sp_txt = wn_match.group(1)
# multi-token text
sp_toks = sp_txt.split()
for tok in sp_toks:
token_txts.append(tok)
token_mlabels.append(sp_lbls)
self.orig_data.append({
"sentence": token_txts,
"labels": token_mlabels,
})
yield self.text_to_instance(token_txts, token_mlabels)
def text_to_instance(self, sentence: List[str], labels: List[List[str]] = None) -> Instance:
tokens, offsets = self.tokenizer.intra_word_tokenize(sentence)
text_field = TextField(tokens, self.token_indexers)
fields = {"tokens": text_field}
if labels is not None:
labels_ = SequenceMultiLabelField.retokenize_tags(labels, offsets)
label_field = SequenceMultiLabelField(labels_, text_field, self.binarizer, "labels")
fields["label"] = label_field
return Instance(fields)
def count_parties(sentence, lexical_dicts, nlp):
num_humans = 0
num_vehicles = 0
def is_in_words(l, category):
for subcategory, words in lexical_dicts[category].items():
if subcategory.startswith("WN:"):
words = [re.match(r"^(.+)-n-\d+$", w).group(1) for w in words]
if l in words:
return True
return False
doc = nlp(sentence.lower())
for token in doc:
lemma = token.lemma_
if is_in_words(lemma, "persons"):
num_humans += 1
if is_in_words(lemma, "vehicles"):
num_vehicles += 1
return num_humans, num_vehicles
def predict_rule_based(annotations="data/crashes/bechdel_annotations_dev_first_25.csv"):
data_crashes = pd.read_csv(annotations)
with open("output/crashes/predict_bechdel/lexical_dicts.json", encoding="utf-8") as f:
lexical_dicts = json.load(f)
nlp = spacy.load("nl_core_news_md")
for _, row in data_crashes.iterrows():
sentence = row["sentence"]
num_humans, num_vehicles = count_parties(sentence, lexical_dicts, nlp)
print(sentence)
print(f"\thumans={num_humans}, vehicles={num_vehicles}")
def evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_first_25.csv", out_file="output/crashes/predict_bechdel/predictions_crashes25.csv"):
data_crashes = pd.read_csv(annotations)
labels_crashes = [
{
"party_mentioned": str(row["mentioned"]),
"party_human": str(row["as_human"]),
"active": str(True) if str(row["active"]).lower() == "true" else str(False)
}
for _, row in data_crashes.iterrows()
]
predictions_crashes = [predictor.predict(
row["sentence"]) for i, row in data_crashes.iterrows()]
crashes_out = []
correct = 0
partial_2_attrs = 0
partial_1_attr = 0
correct_mentions = 0
correct_humans = 0
correct_active = 0
for sentence, label, prediction in zip(data_crashes["sentence"], labels_crashes, predictions_crashes):
predicted = prediction["label"]
if attrib == "all":
gold = "|".join([f"{k}={v}" for k, v in label.items()])
else:
gold = label["attrib"]
if gold == predicted:
correct += 1
if attrib == "all":
partial_2_attrs += 1
partial_1_attr += 1
if attrib == "all":
gold_attrs = set(gold.split("|"))
pred_attrs = set(predicted.split("|"))
if len(gold_attrs & pred_attrs) == 2:
partial_2_attrs += 1
partial_1_attr += 1
elif len(gold_attrs & pred_attrs) == 1:
partial_1_attr += 1
if gold.split("|")[0] == predicted.split("|")[0]:
correct_mentions += 1
if gold.split("|")[1] == predicted.split("|")[1]:
correct_humans += 1
if gold.split("|")[2] == predicted.split("|")[2]:
correct_active += 1
crashes_out.append(
{"sentence": sentence, "gold": gold, "prediction": predicted})
print("ACC_crashes (strict) = ", correct/len(data_crashes))
print("ACC_crashes (partial:2) = ", partial_2_attrs/len(data_crashes))
print("ACC_crashes (partial:1) = ", partial_1_attr/len(data_crashes))
print("ACC_crashes (mentions) = ", correct_mentions/len(data_crashes))
print("ACC_crashes (humans) = ", correct_humans/len(data_crashes))
print("ACC_crashes (active) = ", correct_active/len(data_crashes))
pd.DataFrame(crashes_out).to_csv(out_file)
def filter_events_for_bechdel():
with open("data/crashes/thecrashes_data_all_text.json", encoding="utf-8") as f:
events = json.load(f)
total_articles = 0
data_out = []
for ev in events:
total_articles += len(ev["articles"])
num_persons = len(ev["persons"])
num_transport_modes = len({p["transportationmode"]
for p in ev["persons"]})
if num_transport_modes <= 2:
for art in ev["articles"]:
data_out.append({"event_id": ev["id"], "article_id": art["id"], "headline": art["title"],
"num_persons": num_persons, "num_transport_modes": num_transport_modes})
print("Total articles = ", total_articles)
print("Filtered articles: ", len(data_out))
out_df = pd.DataFrame(data_out)
out_df.to_csv("output/crashes/predict_bechdel/filtered_headlines.csv")
def train_and_eval(train=True):
# use_gpu = False
use_gpu = True
cuda_device = None if use_gpu and torch.cuda.is_available() else -1
transformer = "GroNLP/bert-base-dutch-cased"
# transformer = "xlm-roberta-large"
token_indexers = {"tokens": PretrainedTransformerIndexer(transformer)}
tokenizer = PretrainedTransformerTokenizer(transformer)
binarizer = MultiLabelBinarizer()
binarizer.fit([SEQ_LABELS])
reader = TrafficBechdelReader(token_indexers, tokenizer, binarizer)
instances = list(reader.read("output/prolog/bechdel_headlines.txt"))
orig_data = reader.orig_data
zipped = list(zip(instances, orig_data))
random.shuffle(zipped)
instances_ = [i[0] for i in zipped]
orig_data_ = [i[1] for i in zipped]
num_dev = round(0.05 * len(instances_))
num_test = round(0.25 * len(instances_))
num_train = len(instances_) - num_dev - num_test
print("LEN(train/dev/test)=", num_train, num_dev, num_test)
instances_train = instances_[:num_train]
instances_dev = instances_[num_train:num_train + num_dev]
# instances_test = instances_[num_train+num_dev:num_train:]
# orig_train = orig_data_[:num_train]
orig_dev = orig_data_[num_train:num_train + num_dev]
vocab = Vocabulary.from_instances(instances_train + instances_dev)
embedder = BasicTextFieldEmbedder(
{"tokens": PretrainedTransformerEmbedder(transformer)})
model = MultiSequenceLabelModel(embedder, len(SEQ_LABELS), 1000, vocab)
if use_gpu:
model = model.cuda(cuda_device)
# checkpoint_dir = f"output/crashes/predict_bechdel/model_{attrib}/"
checkpoint_dir = f"/scratch/p289731/predict_bechdel/model_seqlabel/"
serialization_dir = f"/scratch/p289731/predict_bechdel/serialization_seqlabel/"
if train:
os.makedirs(checkpoint_dir)
os.makedirs(serialization_dir)
tensorboard = TensorBoardCallback(
serialization_dir, should_log_learning_rate=True)
checkpointer = Checkpointer(serialization_dir=checkpoint_dir)
optimizer = AdamOptimizer(
[(n, p) for n, p in model.named_parameters() if p.requires_grad],
lr=1e-5
)
train_loader = SimpleDataLoader(
instances_train, batch_size=8, shuffle=True)
dev_loader = SimpleDataLoader(
instances_dev, batch_size=8, shuffle=False)
train_loader.index_with(vocab)
dev_loader.index_with(vocab)
print("\t\tTraining BERT model")
trainer = GradientDescentTrainer(
model,
optimizer,
train_loader,
validation_data_loader=dev_loader,
# patience=32,
patience=2,
# num_epochs=1,
checkpointer=checkpointer,
cuda_device=cuda_device,
serialization_dir=serialization_dir,
callbacks=[tensorboard]
)
trainer.train()
else:
state_dict = torch.load(
"/scratch/p289731/predict_bechdel/serialization_all/best.th", map_location=cuda_device)
model.load_state_dict(state_dict)
print("\t\tProducing predictions...")
predictor = Predictor(model, reader)
predictions_dev = [predictor.predict_instance(i) for i in instances_dev]
data_out = []
for sentence, prediction in zip(orig_dev, predictions_dev):
readable = model.make_human_readable(prediction, "labels")
text = sentence["sentence"]
gold = sentence["labels"]
predicted = readable
data_out.append(
{"sentence": text, "gold": gold, "predicted": predicted})
df_out = pd.DataFrame(data_out)
df_out.to_csv("output/crashes/predict_bechdel/predictions_dev.csv")
# print()
# print("First 25 crashes:")
# evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_first_25.csv",
# out_file="output/crashes/predict_bechdel/predictions_first_25.csv")
# print()
# print("Next 75 crashes:")
# evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_next_75.csv",
# out_file="output/crashes/predict_bechdel/predictions_next_75.csv")
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("action", choices=["train", "predict", "rules", "filter"])
args = ap.parse_args()
if args.action == "train":
train_and_eval(train=True)
elif args.action == "predict":
train_and_eval(train=False)
elif args.action == "rules":
predict_rule_based()
else:
filter_events_for_bechdel()