Gosse Minnema
Re-enable data-loading, change port
b8ce02e
raw
history blame
37.4 kB
import io
import json
import os
import sys
import argparse
import re
import tarfile
from collections import defaultdict
import dataclasses
from datetime import datetime
from typing import Any, Dict, List, Tuple, Optional
import pandas as pd
import spacy
from nltk.corpus import framenet as fn
from nltk.corpus.reader.framenet import FramenetError
from spacy.tokens import Token
from sociofillmore.crashes.utils import is_a_dutch_text
ITALIAN_ACTIVE_AUX = ["avere", "ha", "ho", "hai", "avete", "hanno", "abbiamo"]
DUTCH_ACTIVE_AUX = ["heb", "hebben", "heeft"]
active_frames_df = pd.read_csv("resources/active_frames_full.csv")
ACTIVE_FRAMES = active_frames_df[active_frames_df["active"]]["frame"].tolist()
IGNORE_DEP_LABELS = ["punct"]
DEEP_FRAMES = [
"Transitive_action",
"Causation",
"Transition_to_a_state",
"Event",
"State",
]
# SYNTAX_ANALYSIS_CACHE_FILES = {
# "femicides/rai": "resources/rai_syntax_analysis_cache.json",
# "femicides/rai_main": "resources/rai_main_syntax_analysis_cache.json",
# "femicides/olv": "resources/olv_syntax_analysis_cache.json",
# "crashes/thecrashes": "resources/thecrashes_syntax_analysis_cache.json",
# "migration/pavia": "resources/migration_pavia_syntax_analysis_cache.json"
# }
SYNTAX_ANALYSIS_CACHE_FILES = {
"femicides/rai": "output/femicides/syntax_cache/rai_ALL",
"femicides/rai_main": "output/femicides/syntax_cache/rai_main",
"femicides/rai_ALL": "output/femicides/syntax_cache/rai_ALL",
"femicides/olv": "output/femicides/syntax_cache/olv",
"crashes/thecrashes": "output/crashes/syntax_cache/thecrashes",
"migration/pavia": "output/migration/syntax_cache/pavia",
}
DEEP_FRAMES_CACHE_FILE = "resources/deep_frame_cache.json"
DEP_LABEL_CACHE_FILE = "resources/dep_labels.txt"
POSSIBLE_CONSTRUCTIONS = [
"nonverbal",
"verbal:active",
"verbal:impersonal",
"verbal:reflexive",
"verbal:passive",
"verbal:unaccusative",
"other",
]
def load_deep_frames_cache():
if os.path.isfile(DEEP_FRAMES_CACHE_FILE):
print("Loading deep frame cache...")
with open(DEEP_FRAMES_CACHE_FILE, encoding="utf-8") as f:
deep_frames_cache = json.load(f)
else:
deep_frames_cache = {}
return deep_frames_cache
# make spacy work with google app engine
# (see https://stackoverflow.com/questions/55228492/spacy-on-gae-standard-second-python-exceeds-memory-of-largest-instance)
# nlp = spacy.load("it_core_news_md")
nlp = None
@dataclasses.dataclass
class AnnotationSpan:
tokens_idx: List[int]
tokens_str: List[str]
@dataclasses.dataclass
class FrameStructure:
frame: str
deep_frame: str
target: Optional[AnnotationSpan]
roles: List[Tuple[str, AnnotationSpan]]
deep_roles: List[Tuple[str, AnnotationSpan]]
def make_syntax_cache(dataset, skip_fn=None):
print(f"make_syntax_cache({dataset})")
if dataset == "femicides/rai":
corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_rai_blocks"
corpus = "rai"
spacy_model = "it_core_news_md"
elif dataset == "femicides/rai_main":
corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_rai_main_blocks"
corpus = "rai_main"
spacy_model = "it_core_news_md"
elif dataset == "femicides/rai_ALL":
corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_rai_ALL_blocks"
corpus = "rai_ALL"
spacy_model = "it_core_news_md"
elif dataset == "femicides/olv":
corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_olv_blocks"
corpus = "olv"
spacy_model = "it_core_news_md"
elif dataset == "crashes/thecrashes":
corpus_tarball = "output/crashes/lome/lome_0shot/multilabel_thecrashes_blocks"
corpus = "thecrashes"
spacy_model = "nl_core_news_md"
elif dataset == "migration/pavia":
corpus_tarball = "output/migration/lome/lome_0shot/multilabel_pavia_blocks"
# corpus_tarball = "output/migration/lome/lome_zs-tgt_ev-frm/multilabel_pavia.tar.gz"
corpus = "pavia"
spacy_model = "it_core_news_md"
else:
raise ValueError("Unsupported dataset!")
print("params:")
print(f"\tcorpus_tarball: {corpus_tarball}")
print(f"\tcorpus: {corpus}")
print(f"\tspacy: {spacy_model}")
print("processing files...")
for block in os.listdir(corpus_tarball):
print(block)
with tarfile.open(os.path.join(corpus_tarball, block)) as tar_in:
# check if output tarball exists
cache_location = SYNTAX_ANALYSIS_CACHE_FILES[dataset]
if not os.path.isdir(cache_location):
os.makedirs(cache_location)
lome_files = [f for f in tar_in.getmembers(
) if f.name.endswith(".comm.json")]
lome_files.sort(key=lambda file: file.name)
for file in lome_files:
print(f"\tprocessing file {file}")
doc_id = re.search(r"lome_(\d+)\.comm\.json", file.name).group(1)
skipped = False
if skip_fn is not None:
if skip_fn(doc_id):
print(f"\t\tskip_fn: skipping file {file}")
skipped = True
if skipped:
syntax_analyses = None
else:
file_obj = io.TextIOWrapper(tar_in.extractfile(file))
annotations = json.load(file_obj)
syntax_analyses = []
for sentence in annotations:
syntax_analyses.append(
syntax_analyze(sentence, spacy_model))
# use last two chars of filename as key
file_key = doc_id[:2]
cache_file = f"{cache_location}/{file_key}.json"
if os.path.isfile(cache_file):
with open(cache_file, encoding="utf-8") as f:
key_cache = json.load(f)
else:
key_cache = {}
key_cache[doc_id] = syntax_analyses
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(key_cache, f)
def make_syntax_cache_key(filename):
doc_id = re.search(r"/\d+/lome_(\d+)\.comm\.json", filename).group(1)
return doc_id
def clean_sentence_(sentence):
idx_to_remove = []
for i, tok in enumerate(sentence["tokens"]):
# remove whitespace tokens
if not tok.strip():
idx_to_remove.append(i)
idx_to_remove.reverse()
for idx in idx_to_remove:
for annotation_list in sentence.values():
annotation_list.pop(idx)
def process_prediction_file(
filename: str,
dataset_name: str,
syntax_cache: str,
deep_frames_cache: dict,
tmp_cache: Optional[dict] = None,
file_obj: io.TextIOBase = None,
syntax_cache_key: Optional[str] = None,
deep_frames_list: Optional[List[str]] = None,
spacy_model: str = "it_core_news_md",
spacy_model_obj = None
) -> Tuple[List, ...]:
"""
Process a predictions JSON file
:param filename: path to the JSON file
:param syntax_cache: see `make_syntax_cache()`
:param spacy model: spacy model to be used for syntactic analysis
:param file_obj: already opened object corresponding to `filename`. If given, `file_obj` will be used instead
of loading it from `filename`. This is useful when reading the entire corpus from a tarball (which is what the
SocioFillmore webapp does)
:return:
"""
print("Processing", filename)
if file_obj is not None:
annotations = json.load(file_obj)
else:
with open(filename, encoding="utf-8") as f:
annotations = json.load(f)
if syntax_cache is None:
syntax_analyses = []
for sentence in annotations:
syntax_analyses.append(syntax_analyze(sentence, spacy_model, spacy_model_obj))
else:
if syntax_cache_key is None:
syntax_cache_key = make_syntax_cache_key(filename)
if tmp_cache is not None and syntax_cache_key in tmp_cache:
syntax_analyses = tmp_cache[syntax_cache_key]
else:
with open(f"{syntax_cache}/{syntax_cache_key[:2]}.json", encoding="utf-8") as cache_file:
grouped_analyses = json.load(cache_file)
syntax_analyses = grouped_analyses[syntax_cache_key]
if tmp_cache is not None:
tmp_cache.clear()
tmp_cache.update(grouped_analyses)
fn_structures: List[Dict[int, FrameStructure]] = []
sentences: List[List[str]] = []
role_analyses: List[Dict[int, Dict[str, str]]] = []
for sent_idx, sentence in enumerate(annotations):
clean_sentence_(sentence)
try:
sent_structures = process_fn_sentence(
sentence, deep_frames_cache, deep_frames_list=deep_frames_list
)
# seems to occur for one specific file in the migration set, TODO find out what happens
except AttributeError:
print("Error processing FN annotations")
sent_structures = {}
syntax = syntax_analyses[sent_idx]
# disambiguate syntactic constructions
for fs in sent_structures.values():
target_idx = str(fs.target.tokens_idx[0])
if target_idx not in syntax:
print(
f"Prediction file {filename}: Cannot find syntactic information for target at idx={target_idx}")
continue
fs_syn = syntax[target_idx][-1]
disambiguate_cxs_(fs, fs_syn)
roles = process_syn_sem_roles(sent_structures, syntax)
role_analyses.append(roles)
sentences.append(sentence["tokens"])
fn_structures.append(sent_structures)
return sentences, fn_structures, syntax_analyses, role_analyses
def disambiguate_cxs_(struct: FrameStructure, tgt_syntax):
# no "_" at the beginning: no disambiguation needed
cx = tgt_syntax["syn_construction"]
if not cx.startswith("_"):
return
# print(struct.frame, struct.deep_frame)
# NB works only for the selected relevant frames! if any other frames are added, make sure to update this
if struct.deep_frame in ["Transitive_action", "Causation", "Emotion_directed", "Quarreling", "Impact", "Committing_crime"]:
frame_agentivity_type = "active"
elif struct.frame in ACTIVE_FRAMES:
frame_agentivity_type = "active"
elif struct.frame == "Event":
frame_agentivity_type = "impersonal"
else:
frame_agentivity_type = "unaccusative"
if cx == "_verbal:ACTIVE":
new_cx = f"verbal:{frame_agentivity_type}"
elif cx in ["_verbal:ADPOS", "_verbal:OTH_PART"]:
if frame_agentivity_type == "active":
new_cx = "verbal:passive"
else:
new_cx = f"verbal:{frame_agentivity_type}"
else:
raise ValueError(f"Unknown construction placeholder {cx}")
tgt_syntax["syn_construction"] = new_cx
def find_governed_roles(
syn_self: Dict[str, Any],
syn_children: List[Dict[str, Any]],
roles: List[Tuple[str, AnnotationSpan]],
) -> Dict[str, str]:
roles_found = {}
# find roles that are governed by the predicate
for node in [syn_self] + syn_children:
for role_name, role_span in roles:
if node["lome_idx"] in role_span.tokens_idx:
dep_label = node["dependency"]
if role_name not in roles_found and dep_label not in IGNORE_DEP_LABELS:
if node == syn_self:
roles_found[role_name] = None
else:
roles_found[role_name] = dep_label + "↓"
return roles_found
def analyze_role_dependencies(
fn_struct,
syntax,
role_analysis=None,
tgt_idx=None,
min_depth=-10,
max_depth=10,
depth=0,
label_prefix="",
):
if role_analysis is None:
role_analysis = {}
if tgt_idx is None:
tgt_idx = fn_struct.target.tokens_idx[0]
if depth > max_depth:
return role_analysis
if depth < min_depth:
return role_analysis
new_analysis = {}
new_analysis.update(role_analysis)
token_syntax = syntax[str(tgt_idx)][0]
def update_analysis(mapping):
for role, dep in mapping.items():
if role not in new_analysis:
if label_prefix:
if dep is None:
label = label_prefix
depth_label = depth
else:
label = label_prefix + "--" + dep
depth_label = depth + 1 if depth > 0 else depth - 1
else:
if dep is None:
label = "⋆"
depth_label = depth
else:
label = dep
depth_label = depth + 1 if depth > 0 else depth - 1
new_analysis[role] = label, depth_label
update_analysis(
find_governed_roles(
token_syntax, token_syntax["children"], fn_struct.roles)
)
# from the initial predicate: first try the children
if depth <= 0:
for child in token_syntax["children"]:
child_analysis = analyze_role_dependencies(
fn_struct,
syntax,
role_analysis=new_analysis,
tgt_idx=child["lome_idx"],
max_depth=max_depth,
min_depth=min_depth,
depth=depth - 1,
label_prefix=child["dependency"] + "↓"
)
new_analysis.update(child_analysis)
# ... then try the ancestors
if depth >= 0:
if not token_syntax["ancestors"]:
return new_analysis
first_ancestor = token_syntax["ancestors"][0]
return analyze_role_dependencies(
fn_struct,
syntax,
role_analysis=new_analysis,
tgt_idx=first_ancestor["lome_idx"],
max_depth=max_depth,
min_depth=min_depth,
depth=depth + 1,
label_prefix=token_syntax["dependency"] + "↑",
)
else:
return new_analysis
def process_syn_sem_roles(
sent_structures: Dict[int, FrameStructure], syntax: Dict[str, List[Dict[str, Any]]]
) -> Dict[int, Dict[str, str]]:
analyses = defaultdict(dict)
# go through all frame targets
for struct in sent_structures.values():
tgt_idx = struct.target.tokens_idx[0]
role_deps = analyze_role_dependencies(struct, syntax, max_depth=10)
analyses[tgt_idx] = clean_role_deps(role_deps)
return analyses
def clean_role_deps(role_deps):
res = {}
for role, (dep_str, depth) in role_deps.items():
dep_parts = dep_str.split("--")
if len(dep_parts) == 1:
res[role] = dep_str, depth
else:
res[role] = "--".join([dp[-1]
for dp in dep_parts[:-1]] + [dep_parts[-1]]), depth
return res
def map_or_lookup_deep_frame(
frame: str, deep_frames_cache, save_modified_cache=False, deep_frames_list=None
) -> Tuple[str, Dict[str, str]]:
if frame in deep_frames_cache:
return deep_frames_cache[frame]
else:
deep_frame, mapping = map_to_deep_frame(
frame, deep_frames_list=deep_frames_list
)
deep_frames_cache[frame] = [deep_frame, mapping]
if save_modified_cache:
with open(DEEP_FRAMES_CACHE_FILE, "w", encoding="utf-8") as f:
json.dump(deep_frames_cache, f)
return deep_frames_cache[frame]
def map_to_deep_frame(
frame: str,
target: Optional[str] = None,
mapping: Optional[Dict[str, str]] = None,
self_mapping: Optional[Dict[str, str]] = None,
deep_frames_list: Optional[List[str]] = None,
) -> Tuple[str, Dict[str, str]]:
if deep_frames_list is None:
deep_frames_list = DEEP_FRAMES
# look up in FrameNet
try:
fn_entry = fn.frame(frame)
except FramenetError:
return frame, {}
except LookupError:
return frame, {}
# initial call: `target` == `frame`, mapping maps to self
if target is None:
target = frame
if mapping is None or self_mapping is None:
mapping = self_mapping = {role: role for role in fn_entry.FE.keys()}
# base case: our frame is a deep frame
if frame in deep_frames_list:
return frame, mapping
# otherwise, look at parents
inh_relations = [
fr
for fr in fn_entry.frameRelations
if fr.type.name == "Inheritance" and fr.Child == fn_entry
]
parents = [fr.Parent for fr in inh_relations]
# no parents --> failure, return original frame
if not inh_relations:
return target, self_mapping
# one parent: follow that parent
if len(inh_relations) == 1:
parent_rel = inh_relations[0]
parent = parents[0]
new_mapping = define_fe_mapping(mapping, parent_rel)
return map_to_deep_frame(
parent.name, target, new_mapping, self_mapping, deep_frames_list
)
# more parents: check if any of them leads to a deep frame
deep_frames = []
deep_mappings = []
for parent_rel, parent in zip(inh_relations, parents):
new_mapping = define_fe_mapping(mapping, parent_rel)
final_frame, final_mapping = map_to_deep_frame(
parent.name, target, new_mapping, self_mapping, deep_frames_list
)
if final_frame in deep_frames_list:
deep_frames.append(final_frame)
deep_mappings.append(final_mapping)
for deep_frame in deep_frames_list:
if deep_frame in deep_frames:
idx = deep_frames.index(deep_frame)
return deep_frame, deep_mappings[idx]
# nothing found, return original frame
return target, self_mapping
def define_fe_mapping(mapping, parent_rel):
child_to_parent_mapping = {
fer.subFEName: fer.superFEName for fer in parent_rel.feRelations
}
target_to_parent_mapping = {
role: child_to_parent_mapping[mapping[role]]
for role in mapping
if mapping[role] in child_to_parent_mapping
}
return target_to_parent_mapping
def is_at_root(syntax_info):
# you should either be the actual root...
if syntax_info["dependency"] == "ROOT":
return True
# ... or be the subject of the root
if syntax_info["dependency"] == "nsubj" and syntax_info["ancestors"][0]["dependency"] == "ROOT":
return True
return False
def get_tarball_blocks(dataset, lome_model="lome_0shot"):
if dataset == "femicides/rai":
return f"output/femicides/lome/{lome_model}/multilabel_rai_ALL_blocks"
if dataset == "femicides/rai_main":
return f"output/femicides/lome/{lome_model}/multilabel_rai_main_blocks"
elif dataset == "femicides/olv":
return f"output/femicides/lome/{lome_model}/multilabel_olv_blocks"
elif dataset == "crashes/thecrashes":
return f"output/crashes/lome/{lome_model}/multilabel_thecrashes_blocks"
elif dataset == "migration/pavia":
return f"output/migration/lome/{lome_model}/multilabel_pavia_blocks"
else:
raise ValueError("Unsupported dataset!")
def analyze_single_document(doc_id, event_id, lome_model, dataset, texts_df, deep_frames_cache):
data_domain, data_corpus = dataset.split("/")
syntax_cache = SYNTAX_ANALYSIS_CACHE_FILES[dataset]
print(dataset)
if dataset == "migration/pavia": # this is a hack, fix it!
pred_file_path = f"output/migration/lome/multilabel/{lome_model}/pavia/{event_id}/lome_{doc_id}.comm.json"
elif dataset == "femicides/olv":
pred_file_path = f"output/femicides/lome/lome_0shot/multilabel/olv/{event_id}/lome_{doc_id}.comm.json"
else:
pred_file_path = f"output/{data_domain}/lome/lome_0shot/multilabel/{data_corpus}/{event_id}/lome_{doc_id}.comm.json"
print(f"Analyzing file {pred_file_path}")
doc_id = os.path.basename(pred_file_path).split(".")[0].split("_")[1]
doc_key = doc_id[:2]
tarball = get_tarball_blocks(dataset, lome_model) + f"/block_{doc_key}.tar"
with tarfile.open(tarball, "r") as tar_f:
pred_file = io.TextIOWrapper(tar_f.extractfile(pred_file_path))
(
sents,
pred_structures,
syntax_analyses,
role_analyses,
) = process_prediction_file(
filename=pred_file_path,
dataset_name=dataset,
file_obj=pred_file,
syntax_cache=syntax_cache,
deep_frames_cache=deep_frames_cache
)
output = []
for sent, structs, syntax, roles in zip(
sents, pred_structures, syntax_analyses, role_analyses
):
output.append(
{
"sentence": sent,
"fn_structures": [
dataclasses.asdict(fs) for fs in structs.values()
],
"syntax": syntax,
"roles": roles,
"meta": {
"event_id": event_id,
"doc_id": doc_id,
"text_meta": get_text_meta(doc_id, texts_df),
},
}
)
return output
def get_text_meta(doc_id, texts_df):
row = texts_df[texts_df["text_id"] == int(doc_id)].iloc[0]
if "pubdate" in row:
pubdate = row["pubdate"] if not pd.isna(row["pubdate"]) else None
elif "pubyear" in row:
pubdate = int(row["pubyear"])
else:
pubdate = None
return {
"url": row["url"] if "url" in row else None,
"pubdate": pubdate,
"provider": row["provider"],
"title": row["title"] if not pd.isna(row["title"]) else None,
"days_after_event": int(row["days_after_event"]) if "days_after_event" in row and not pd.isna(row["days_after_event"]) else 0
}
def process_fn_sentence(
sentence, deep_frames_cache, post_process=True, deep_frames_list=None
):
# frame structures in the sentence
sent_structures: Dict[int, FrameStructure] = {}
# role spans currently being built up (per structure + role name)
cur_spans: Dict[Tuple[int, str]] = {}
for token_idx, (token_str, frame_annos) in enumerate(
zip(sentence["tokens"], sentence["frame_list"])
):
for fa in frame_annos:
# remove "virtual root" nonsense token
if "@@VIRTUAL_ROOT@@" in fa:
continue
fa = fa.split("@@")[0] # remove confidence score if it's there
anno, struct_id_str = fa.split("@")
struct_id = int(struct_id_str)
frame_name = anno.split(":")[1]
deep_frame, deep_frame_mapping = map_or_lookup_deep_frame(
frame_name, deep_frames_cache, deep_frames_list=deep_frames_list
)
if struct_id not in sent_structures:
sent_structures[struct_id] = FrameStructure(
frame=frame_name,
deep_frame=deep_frame,
target=None,
roles=[],
deep_roles=[],
)
cur_struct = sent_structures[struct_id]
# TODO: get rid of this hack
anno = anno.replace("I::", "I:")
anno = anno.replace("B::", "B:")
if anno.split(":")[0] == "T":
if cur_struct.target is None:
cur_struct.target = AnnotationSpan(
[token_idx], [token_str])
else:
cur_struct.target.tokens_idx.append(token_idx)
cur_struct.target.tokens_str.append(token_str)
elif anno.split(":")[0] == "B":
role_name = anno.split(":")[2]
role_span = AnnotationSpan([token_idx], [token_str])
cur_struct.roles.append((role_name, role_span))
if role_name in deep_frame_mapping:
cur_struct.deep_roles.append(
(deep_frame_mapping[role_name], role_span)
)
cur_spans[(struct_id, role_name)] = role_span
elif anno.split(":")[0] == "I":
role_name = anno.split(":")[2]
role_span = cur_spans[(struct_id, role_name)]
role_span.tokens_str.append(token_str)
role_span.tokens_idx.append(token_idx)
# post-process: remove punctuation in targets
if post_process:
for fs in sent_structures.values():
if len(fs.target.tokens_str) > 1:
target_tok_str_to_remove = []
target_tok_idx_to_remove = []
for tok_str, tok_idx in zip(fs.target.tokens_str, fs.target.tokens_idx):
if tok_str in ["``", "''", "`", "'", ".", ",", ";", ":"]:
target_tok_str_to_remove.append(tok_str)
target_tok_idx_to_remove.append(tok_idx)
for tok_str, tok_idx in zip(
target_tok_str_to_remove, target_tok_idx_to_remove
):
fs.target.tokens_str.remove(tok_str)
fs.target.tokens_idx.remove(tok_idx)
return sent_structures
def map_back_spacy_lome_tokens(spacy_doc, lome_tokens):
if len(lome_tokens) > len(spacy_doc):
raise ValueError(
f"Cannot re-tokenize (#lome={len(lome_tokens)} // #spacy={len(spacy_doc)})"
)
spacy_to_lome = {}
lome_idx = 0
for spacy_idx, spacy_token in enumerate(spacy_doc):
spacy_to_lome[spacy_idx] = lome_idx
# whitespace after token: tokens correspond
if spacy_token.whitespace_:
lome_idx += 1
return spacy_to_lome
def get_syn_category(spacy_token):
if spacy_token.pos_ == "NOUN":
return "n"
if spacy_token.pos_ == "ADJ":
return "adj"
if spacy_token.pos_ == "ADV":
return "adv"
if spacy_token.pos_ == "ADP":
return "p"
if spacy_token.pos_ == "VERB":
if spacy_token.morph.get("VerbForm") == ["Fin"]:
return "v:fin"
if spacy_token.morph.get("VerbForm") == ["Part"]:
return "v:part"
if spacy_token.morph.get("VerbForm") == ["Ger"]:
return "v:ger"
if spacy_token.morph.get("VerbForm") == ["Inf"]:
return "v:inf"
return "other"
def syntax_analyze(sentence, spacy_model_name, spacy_model_obj=None) -> Dict[str, Dict[str, Any]]:
lome_tokens = sentence["tokens"]
# load spacy model locally (so that it works in GAE)
# global nlp
if spacy_model_obj is not None:
nlp = spacy_model_obj
else:
nlp = spacy.load(spacy_model_name)
spacy_doc = nlp(" ".join(lome_tokens))
analysis = defaultdict(list)
spacy_to_lome_tokens = map_back_spacy_lome_tokens(spacy_doc, lome_tokens)
for spacy_idx, token in enumerate(spacy_doc):
lome_idx = spacy_to_lome_tokens[spacy_idx]
syn_category = get_syn_category(token)
syn_construction = get_syn_construction(token, syn_category)
children = []
for c in token.children:
children.append(
{
"token": c.text,
"spacy_idx": c.i,
"lome_idx": spacy_to_lome_tokens[c.i],
"syn_category": get_syn_category(c),
"dependency": c.dep_,
}
)
ancestors = []
for a in token.ancestors:
ancestors.append(
{
"token": a.text,
"spacy_idx": a.i,
"lome_idx": spacy_to_lome_tokens[a.i],
"syn_category": get_syn_category(a),
"dependency": a.dep_,
}
)
# str key so that it doesn't change when converting to JSON
lome_key = str(lome_idx)
analysis[lome_key].append(
{
"token": token.text,
"dependency": token.dep_,
"spacy_idx": spacy_idx,
"lome_idx": lome_idx,
"syn_category": syn_category,
"syn_construction": syn_construction,
"children": children,
"ancestors": ancestors,
}
)
return analysis
def get_syn_construction(token: Token, syn_category: str) -> str:
if syn_category in ["n", "adj", "adv", "p"]:
return "nonverbal"
if syn_category.startswith("v:"):
# find reflexives
for c in token.children:
if c.lemma_.lower() in ["si", "zich", "zichzelf"]:
return "verbal:reflexive"
# find impersonal constructions
for c in token.children:
if c.dep_ == "expl":
return "verbal:impersonal"
# all other finite verbs/gerunds/infinites -> active construction
if syn_category in ["v:fin", "v:ger", "v:inf"]:
return "_verbal:ACTIVE"
if syn_category == "v:part":
if token.dep_ == "acl":
return "_verbal:ADPOS"
for c in token.children:
# passive subj or auxiliary present: it's a passive
if c.dep_ in ["nsubj:pass", "aux:pass"]:
return "verbal:passive"
# auxiliary "HAVE" (avere/hebben) present: it's an active
if (
c.dep_ == "aux"
and c.lemma_.lower() in ITALIAN_ACTIVE_AUX + DUTCH_ACTIVE_AUX
):
return "verbal:active"
return "_verbal:OTH_PART"
return "other"
def get_syntax_info(struct: FrameStructure, syntax: Dict) -> Dict:
target_idx = str(struct.target.tokens_idx[0])
# print(target_idx, syntax)
syntax_for_target = syntax[target_idx]
return syntax_for_target[-1]
def enrich_texts_df(texts_df: pd.DataFrame, events_df: pd.DataFrame):
time_delta_rows: List[Optional[int]] = []
for idx, text_row in texts_df.iterrows():
try:
event_row = events_df[events_df["event:id"]
== text_row["event_id"]].iloc[0]
except IndexError:
print(f"Skipping {idx} (IndexError)")
time_delta_rows.append(None)
if "pubdate" not in text_row or pd.isna(text_row["pubdate"]) or pd.isna(event_row["event:date"]):
time_delta_rows.append(None)
else:
try:
pub_date = datetime.strptime(
text_row["pubdate"], "%Y-%m-%d %H:%M:%S")
event_date = datetime.strptime(
event_row["event:date"], "%Y-%m-%d")
time_delta = pub_date - event_date
time_delta_days = time_delta.days
time_delta_rows.append(time_delta_days)
except ValueError as e:
print(
f"\t\terror parsing dates, see below for more info:\n\t\t{e}")
time_delta_rows.append(None)
return texts_df.assign(days_after_event=time_delta_rows)
def read_frames_of_interest(dataset) -> List[str]:
if dataset in ["femicides/rai", "femicides/olv"]:
file = "resources/femicide_frame_list.txt"
elif dataset == "crashes/thecrashes":
file = "resources/crashes_frame_list.txt"
elif dataset == "migration/pavia":
file = "resources/migration_frame_list.txt"
else:
raise ValueError("Unsupported dataset")
frames = set()
with open(file, encoding="utf-8") as f:
for line in f:
line = line.strip()
if line.startswith("#") or not line:
continue
frames.add(line[0].upper() + line[1:].lower())
return sorted(frames)
def make_dep_label_cache():
labels = set()
for dataset in ["femicides/rai", "crashes/thecrashes", "migration/pavia"]:
tarball = (
"output/femicides/lome/lome_0shot/multilabel_rai.tar.gz"
if dataset == "femicides/rai"
else "output/crashes/lome/lome_0shot/multilabel_thecrashes.tar.gz"
if dataset == "crashes/thecrashes"
else "output/migration/lome/lome_0shot/multilabel_pavia.tar.gz"
)
spacy_model = (
"it_core_news_md" if dataset["femicides/rai",
"migration/pavia"] else "nl_core_news_md"
)
deep_frames_cache = load_deep_frames_cache(dataset)
syntax_cache = SYNTAX_ANALYSIS_CACHE_FILES[dataset]
with tarfile.open(tarball, "r:gz") as tar_f:
for mem in [
m.name for m in tar_f.getmembers() if m.name.endswith(".comm.json")
]:
if mem is None:
continue
print(mem)
mem_obj = io.TextIOWrapper(tar_f.extractfile(mem))
(_, _, _, role_analyses,) = process_prediction_file(
filename=mem,
dataset_name=dataset,
file_obj=mem_obj,
syntax_cache=syntax_cache,
deep_frames_cache=deep_frames_cache,
spacy_model=spacy_model,
)
if role_analyses is None:
print(f"\tSkipping file {mem}, no role analyses found")
continue
for sent_ra in role_analyses:
for ra in sent_ra.values():
for dep, _ in ra.values():
labels.add(dep)
with open(DEP_LABEL_CACHE_FILE, "w", encoding="utf-8") as f_out:
for label in sorted(labels):
f_out.write(label + os.linesep)
def analyze_external_file(file_in, file_out, spacy_model):
deep_frames_cache = load_deep_frames_cache()
(
sents,
pred_structures,
syntax_analyses,
role_analyses,
) = process_prediction_file(file_in, "", None, deep_frames_cache, spacy_model_obj=spacy_model)
output = []
for sent, structs, syntax, roles in zip(
sents, pred_structures, syntax_analyses, role_analyses
):
output.append(
{
"sentence": sent,
"fn_structures": [
dataclasses.asdict(fs) for fs in structs.values()
],
"syntax": syntax,
"roles": roles
}
)
with open(file_out, "w", encoding="utf-8") as f_out:
json.dump(output, f_out, indent=4)
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("command", choices=[
"make_syntax_cache", "make_dep_label_cache", "analyze_file"
])
ap.add_argument("dataset", choices=["femicides/rai", "femicides/rai_main", "femicides/rai_ALL",
"femicides/olv", "crashes/thecrashes", "migration/pavia", "*"])
ap.add_argument("--input_file", type=str, default="")
ap.add_argument("--output_file", type=str, default="")
args = ap.parse_args()
if args.command == "make_syntax_cache":
if args.dataset == "*":
raise ValueError(
"Please specificy a dataset for `make_syntax_cache`")
if args.dataset == "crashes/thecrashes":
make_syntax_cache(
"crashes/thecrashes", skip_fn=lambda f: not is_a_dutch_text(f)
)
elif args.dataset == "femicides/rai":
make_syntax_cache("femicides/rai")
elif args.dataset == "femicides/rai_main":
make_syntax_cache("femicides/rai_main")
elif args.dataset == "femicides/rai_ALL":
make_syntax_cache("femicides/rai_ALL")
elif args.dataset == "femicides/olv":
make_syntax_cache("femicides/olv")
else:
make_syntax_cache("migration/pavia")
elif args.command == "make_dep_label_cache":
make_dep_label_cache()
elif args.command == "analyze_file":
analyze_external_file(args.input_file, args.output_file)