File size: 3,755 Bytes
05922fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
local env = import "../env.jsonnet";

local dataset_path = "data/better/basic/sent/";
local ontology_path = "data/better/ontology.tsv";

local debug = false;

# reader
local pretrained_model = env.str("ENCODER", "xlm-roberta-large");

# model
local label_dim = env.json("LABEL_DIM", "64");
local dropout = env.json("DROPOUT", "0.2");
local bio_dim = env.json("BIO_DIM", "512");
local bio_layers = env.json("BIO_LAYER", "2");
local span_typing_dims = env.json("TYPING_DIMS", "[256, 256]");
local typing_loss_factor = env.json("LOSS_FACTOR", "8.0");

# loader
local max_training_tokens = 512;
local max_inference_tokens = 1024;

# training
local layer_fix = env.json("LAYER_FIX", "0");
local grad_acc = env.json("GRAD_ACC", "1");
local cuda_devices  = env.json("CUDA_DEVICES", "[-1]");
local patience = env.json("PATIENCE", "null");

{
    dataset_reader: {
        type: "better",
        eval_type: "basic",
        debug: debug,
        pretrained_model: pretrained_model,
        ignore_label: false,
        [ if debug then "max_instances" ]: 128,
    },
    train_data_path: dataset_path + "/basic.eng-provided-72.0pct.train-70.0pct.d.bp.json",
    validation_data_path: dataset_path + "/basic.eng-provided-72.0pct.analysis-15.0pct.ref.d.bp.json",
    test_data_path: dataset_path + "/basic.eng-provided-72.0pct.devtest-15.0pct.ref.d.bp.json",

    datasets_for_vocab_creation: ["train"],

    data_loader: {
        batch_sampler: {
            type: "max_tokens_sampler",
            max_tokens: max_training_tokens,
            sorting_keys: ['tokens']
        }
    },

    validation_data_loader: {
        batch_sampler: {
            type: "max_tokens_sampler",
            max_tokens: max_inference_tokens,
            sorting_keys: ['tokens']
        }
    },

    model: {
        type: "span",
        word_embedding: {
            token_embedders: {
                "pieces": {
                    type: "pretrained_transformer",
                    model_name: pretrained_model,
                }
            },
        },
        span_extractor: {
            type: 'combo',
            sub_extractors: [
                {
                    type: 'self_attentive',
                },
                {
                    type: 'bidirectional_endpoint',
                }
            ]
        },
        span_finder: {
            type: "bio",
            bio_encoder: {
                type: "lstm",
                hidden_size: bio_dim,
                num_layers: bio_layers,
                bidirectional: true,
                dropout: dropout,
            },
            no_label: false,
        },
        span_typing: {
            type: 'mlp',
            hidden_dims: span_typing_dims,
        },
        metrics: [{type: "srl"}],

        typing_loss_factor: typing_loss_factor,
        ontology_path: ontology_path,
        label_dim: label_dim,
        max_decoding_spans: 128,
        max_recursion_depth: 2,
        debug: debug,
    },

    trainer: {
        num_epochs: 128,
        patience: patience,
        [if std.length(cuda_devices) == 1 then "cuda_device"]: cuda_devices[0],
        validation_metric: "+em_f",
        grad_norm: 10,
        grad_clipping: 10,
        num_gradient_accumulation_steps: grad_acc,
        optimizer: {
            type: "transformer",
            base: {
                type: "adam",
                lr: 1e-3,
            },
            embeddings_lr: 0.0,
            encoder_lr: 1e-5,
            pooler_lr: 1e-5,
            layer_fix: layer_fix,
        }
    },

    cuda_devices:: cuda_devices,
    [if std.length(cuda_devices) > 1 then "distributed"]: {
        "cuda_devices": cuda_devices
    },
    [if std.length(cuda_devices) == 1 then "evaluate_on_test"]: true
}