Spaces:
Sleeping
Sleeping
from sftp import SpanPredictor | |
def print_children(sentence, boundary, labels, _): | |
print('Sentence:', ' '.join(sentence)) | |
for (start_idx, end_idx), lbl in zip(boundary, labels): | |
print(' '.join(sentence[start_idx:end_idx+1]), ':', lbl) | |
print('='*20) | |
def example(): | |
print("Loading predictor...") | |
predictor = SpanPredictor.from_path( | |
#'/home/gqin2/public/release/sftp/0.0.2/framenet', | |
"/data/p289731/cloned/lome-models/models/spanfinder/model.mod.tar.gz", | |
cuda_device=-1 | |
) | |
print("Predicting for sentence..") | |
sentence = ['Tom', 'eats', 'an', 'apple', 'and', 'he', 'wakes', 'up', '.'] | |
p1 = predictor.force_decode(sentence) | |
print_children(sentence, *p1) | |
p2 = predictor.force_decode(sentence, parent_span=(1, 1), parent_label='Ingestion') | |
print_children(sentence, *p2) | |
p3 = predictor.force_decode(sentence, child_spans=[(0, 0), (2, 3)], parent_span=(1, 1), parent_label='Ingestion') | |
print_children(sentence, *p3) | |
if __name__ == '__main__': | |
example() | |