makcrx
test keywords
d869f0d
raw
history blame
1.58 kB
from langchain.vectorstores import FAISS
from langchain.embeddings import SentenceTransformerEmbeddings
import gradio as gr
import reranking
from extract_keywords import init_keyword_extractor, extract_keywords
embeddings = SentenceTransformerEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1")
db = FAISS.load_local('faiss_qa', embeddings)
init_keyword_extractor()
def main(query):
query = query.lower()
query_keywords = set(extract_keywords(query))
result_docs = db.similarity_search_with_score(query, k=20)
if len(query_keywords) > 0:
result_docs = filter(lambda doc: len(set(extract_keywords(doc[0].page_content)).intersection(query_keywords)) > 0, result_docs)
if len(result_docs) == 0:
return 'Ответ не найден', 0, ''
if len(result_docs) == 1:
score, index = 0, 0
else:
sentences = [doc[0].page_content for doc in result_docs]
#print('----------------------------------------------------------------')
#for doc in result_docs:
# print(doc[0].metadata['articleId'], ' | ', doc[0].page_content, ' | ', doc[0].metadata['answer'])
score, index = reranking.search(query, sentences)
return result_docs[index][0].metadata['answer'], score, result_docs[index][0].page_content
demo = gr.Interface(fn=main, inputs="text", outputs=[
gr.Textbox(label="Ответ, который будет показан клиенту"),
gr.Textbox(label="Score"),
gr.Textbox(label="Вопрос, по которому был найден ответ"),
])
demo.launch()