KevinHuSh
remove unused codes, seperate layout detection out as a new api. Add new rag methed 'table' (#55)
407b252
import copy | |
import random | |
import re | |
import numpy as np | |
from rag.parser import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table, \ | |
hierarchical_merge, make_colon_as_title, naive_merge, random_choices | |
from rag.nlp import huqie | |
from rag.parser.docx_parser import HuDocxParser | |
from rag.parser.pdf_parser import HuParser | |
class Pdf(HuParser): | |
def __call__(self, filename, binary=None, from_page=0, | |
to_page=100000, zoomin=3, callback=None): | |
self.__images__( | |
filename if not binary else binary, | |
zoomin, | |
from_page, | |
to_page) | |
callback(0.1, "OCR finished") | |
from timeit import default_timer as timer | |
start = timer() | |
self._layouts_paddle(zoomin) | |
callback(0.47, "Layout analysis finished") | |
print("paddle layouts:", timer() - start) | |
self._table_transformer_job(zoomin) | |
callback(0.68, "Table analysis finished") | |
self._text_merge() | |
self._concat_downward(concat_between_pages=False) | |
self._filter_forpages() | |
self._merge_with_same_bullet() | |
callback(0.75, "Text merging finished.") | |
tbls = self._extract_table_figure(True, zoomin, False) | |
callback(0.8, "Text extraction finished") | |
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls | |
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs): | |
doc = { | |
"docnm_kwd": filename, | |
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename)) | |
} | |
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"]) | |
pdf_parser = None | |
sections,tbls = [], [] | |
if re.search(r"\.docx?$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
doc_parser = HuDocxParser() | |
# TODO: table of contents need to be removed | |
sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page) | |
remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200))) | |
callback(0.8, "Finish parsing.") | |
elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |
pdf_parser = Pdf() | |
sections,tbls = pdf_parser(filename if not binary else binary, | |
from_page=from_page, to_page=to_page, callback=callback) | |
elif re.search(r"\.txt$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
txt = "" | |
if binary:txt = binary.decode("utf-8") | |
else: | |
with open(filename, "r") as f: | |
while True: | |
l = f.readline() | |
if not l:break | |
txt += l | |
sections = txt.split("\n") | |
sections = [(l,"") for l in sections if l] | |
remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200))) | |
callback(0.8, "Finish parsing.") | |
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)") | |
make_colon_as_title(sections) | |
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)]) | |
if bull >= 0: cks = hierarchical_merge(bull, sections, 3) | |
else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?")) | |
sections = [t for t, _ in sections] | |
# is it English | |
eng = is_english(random_choices(sections, k=218)) | |
res = [] | |
# add tables | |
for img, rows in tbls: | |
bs = 10 | |
de = ";" if eng else ";" | |
for i in range(0, len(rows), bs): | |
d = copy.deepcopy(doc) | |
r = de.join(rows[i:i + bs]) | |
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r) | |
tokenize(d, r, eng) | |
d["image"] = img | |
res.append(d) | |
print("TABLE", d["content_with_weight"]) | |
# wrap up to es documents | |
for ck in cks: | |
d = copy.deepcopy(doc) | |
ck = "\n".join(ck) | |
if pdf_parser: | |
d["image"] = pdf_parser.crop(ck) | |
ck = pdf_parser.remove_tag(ck) | |
tokenize(d, ck, eng) | |
res.append(d) | |
return res | |
if __name__ == "__main__": | |
import sys | |
def dummy(a, b): | |
pass | |
chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy) | |