Commit
·
760686a
1
Parent(s):
d2bd1d1
Format: dos2unix (#4467)
Browse files### What problem does this PR solve?
Format the code
### Type of change
- [x] Refactoring
Signed-off-by: Jin Hai <haijin.chn@gmail.com>
- agent/component/akshare.py +56 -56
- agent/component/concentrator.py +35 -35
- agent/component/jin10.py +130 -130
- agent/component/tushare.py +72 -72
- agent/component/wencai.py +80 -80
- agent/component/yahoofinance.py +84 -84
- agent/templates/investment_advisor.json +571 -571
- agent/templates/text2sql.json +585 -585
- agent/test/dsl_examples/concentrator_message.json +112 -112
- rag/svr/cache_file_svr.py +59 -59
- sdk/python/ragflow_sdk/modules/base.py +38 -38
- sdk/python/ragflow_sdk/modules/session.py +73 -73
agent/component/akshare.py
CHANGED
@@ -1,56 +1,56 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
from abc import ABC
|
17 |
-
import pandas as pd
|
18 |
-
import akshare as ak
|
19 |
-
from agent.component.base import ComponentBase, ComponentParamBase
|
20 |
-
|
21 |
-
|
22 |
-
class AkShareParam(ComponentParamBase):
|
23 |
-
"""
|
24 |
-
Define the AkShare component parameters.
|
25 |
-
"""
|
26 |
-
|
27 |
-
def __init__(self):
|
28 |
-
super().__init__()
|
29 |
-
self.top_n = 10
|
30 |
-
|
31 |
-
def check(self):
|
32 |
-
self.check_positive_integer(self.top_n, "Top N")
|
33 |
-
|
34 |
-
|
35 |
-
class AkShare(ComponentBase, ABC):
|
36 |
-
component_name = "AkShare"
|
37 |
-
|
38 |
-
def _run(self, history, **kwargs):
|
39 |
-
ans = self.get_input()
|
40 |
-
ans = ",".join(ans["content"]) if "content" in ans else ""
|
41 |
-
if not ans:
|
42 |
-
return AkShare.be_output("")
|
43 |
-
|
44 |
-
try:
|
45 |
-
ak_res = []
|
46 |
-
stock_news_em_df = ak.stock_news_em(symbol=ans)
|
47 |
-
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
|
48 |
-
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
|
49 |
-
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
|
50 |
-
except Exception as e:
|
51 |
-
return AkShare.be_output("**ERROR**: " + str(e))
|
52 |
-
|
53 |
-
if not ak_res:
|
54 |
-
return AkShare.be_output("")
|
55 |
-
|
56 |
-
return pd.DataFrame(ak_res)
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
from abc import ABC
|
17 |
+
import pandas as pd
|
18 |
+
import akshare as ak
|
19 |
+
from agent.component.base import ComponentBase, ComponentParamBase
|
20 |
+
|
21 |
+
|
22 |
+
class AkShareParam(ComponentParamBase):
|
23 |
+
"""
|
24 |
+
Define the AkShare component parameters.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
super().__init__()
|
29 |
+
self.top_n = 10
|
30 |
+
|
31 |
+
def check(self):
|
32 |
+
self.check_positive_integer(self.top_n, "Top N")
|
33 |
+
|
34 |
+
|
35 |
+
class AkShare(ComponentBase, ABC):
|
36 |
+
component_name = "AkShare"
|
37 |
+
|
38 |
+
def _run(self, history, **kwargs):
|
39 |
+
ans = self.get_input()
|
40 |
+
ans = ",".join(ans["content"]) if "content" in ans else ""
|
41 |
+
if not ans:
|
42 |
+
return AkShare.be_output("")
|
43 |
+
|
44 |
+
try:
|
45 |
+
ak_res = []
|
46 |
+
stock_news_em_df = ak.stock_news_em(symbol=ans)
|
47 |
+
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
|
48 |
+
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
|
49 |
+
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
|
50 |
+
except Exception as e:
|
51 |
+
return AkShare.be_output("**ERROR**: " + str(e))
|
52 |
+
|
53 |
+
if not ak_res:
|
54 |
+
return AkShare.be_output("")
|
55 |
+
|
56 |
+
return pd.DataFrame(ak_res)
|
agent/component/concentrator.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
from abc import ABC
|
17 |
-
from agent.component.base import ComponentBase, ComponentParamBase
|
18 |
-
|
19 |
-
|
20 |
-
class ConcentratorParam(ComponentParamBase):
|
21 |
-
"""
|
22 |
-
Define the Concentrator component parameters.
|
23 |
-
"""
|
24 |
-
|
25 |
-
def __init__(self):
|
26 |
-
super().__init__()
|
27 |
-
|
28 |
-
def check(self):
|
29 |
-
return True
|
30 |
-
|
31 |
-
|
32 |
-
class Concentrator(ComponentBase, ABC):
|
33 |
-
component_name = "Concentrator"
|
34 |
-
|
35 |
-
def _run(self, history, **kwargs):
|
36 |
return Concentrator.be_output("")
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
from abc import ABC
|
17 |
+
from agent.component.base import ComponentBase, ComponentParamBase
|
18 |
+
|
19 |
+
|
20 |
+
class ConcentratorParam(ComponentParamBase):
|
21 |
+
"""
|
22 |
+
Define the Concentrator component parameters.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
def check(self):
|
29 |
+
return True
|
30 |
+
|
31 |
+
|
32 |
+
class Concentrator(ComponentBase, ABC):
|
33 |
+
component_name = "Concentrator"
|
34 |
+
|
35 |
+
def _run(self, history, **kwargs):
|
36 |
return Concentrator.be_output("")
|
agent/component/jin10.py
CHANGED
@@ -1,130 +1,130 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
import json
|
17 |
-
from abc import ABC
|
18 |
-
import pandas as pd
|
19 |
-
import requests
|
20 |
-
from agent.component.base import ComponentBase, ComponentParamBase
|
21 |
-
|
22 |
-
|
23 |
-
class Jin10Param(ComponentParamBase):
|
24 |
-
"""
|
25 |
-
Define the Jin10 component parameters.
|
26 |
-
"""
|
27 |
-
|
28 |
-
def __init__(self):
|
29 |
-
super().__init__()
|
30 |
-
self.type = "flash"
|
31 |
-
self.secret_key = "xxx"
|
32 |
-
self.flash_type = '1'
|
33 |
-
self.calendar_type = 'cj'
|
34 |
-
self.calendar_datatype = 'data'
|
35 |
-
self.symbols_type = 'GOODS'
|
36 |
-
self.symbols_datatype = 'symbols'
|
37 |
-
self.contain = ""
|
38 |
-
self.filter = ""
|
39 |
-
|
40 |
-
def check(self):
|
41 |
-
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
|
42 |
-
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
|
43 |
-
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
|
44 |
-
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
|
45 |
-
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
|
46 |
-
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
|
47 |
-
|
48 |
-
|
49 |
-
class Jin10(ComponentBase, ABC):
|
50 |
-
component_name = "Jin10"
|
51 |
-
|
52 |
-
def _run(self, history, **kwargs):
|
53 |
-
ans = self.get_input()
|
54 |
-
ans = " - ".join(ans["content"]) if "content" in ans else ""
|
55 |
-
if not ans:
|
56 |
-
return Jin10.be_output("")
|
57 |
-
|
58 |
-
jin10_res = []
|
59 |
-
headers = {'secret-key': self._param.secret_key}
|
60 |
-
try:
|
61 |
-
if self._param.type == "flash":
|
62 |
-
params = {
|
63 |
-
'category': self._param.flash_type,
|
64 |
-
'contain': self._param.contain,
|
65 |
-
'filter': self._param.filter
|
66 |
-
}
|
67 |
-
response = requests.get(
|
68 |
-
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
|
69 |
-
headers=headers, data=json.dumps(params))
|
70 |
-
response = response.json()
|
71 |
-
for i in response['data']:
|
72 |
-
jin10_res.append({"content": i['data']['content']})
|
73 |
-
if self._param.type == "calendar":
|
74 |
-
params = {
|
75 |
-
'category': self._param.calendar_type
|
76 |
-
}
|
77 |
-
response = requests.get(
|
78 |
-
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
|
79 |
-
headers=headers, data=json.dumps(params))
|
80 |
-
|
81 |
-
response = response.json()
|
82 |
-
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
|
83 |
-
if self._param.type == "symbols":
|
84 |
-
params = {
|
85 |
-
'type': self._param.symbols_type
|
86 |
-
}
|
87 |
-
if self._param.symbols_datatype == "quotes":
|
88 |
-
params['codes'] = 'BTCUSD'
|
89 |
-
response = requests.get(
|
90 |
-
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
|
91 |
-
headers=headers, data=json.dumps(params))
|
92 |
-
response = response.json()
|
93 |
-
if self._param.symbols_datatype == "symbols":
|
94 |
-
for i in response['data']:
|
95 |
-
i['Commodity Code'] = i['c']
|
96 |
-
i['Stock Exchange'] = i['e']
|
97 |
-
i['Commodity Name'] = i['n']
|
98 |
-
i['Commodity Type'] = i['t']
|
99 |
-
del i['c'], i['e'], i['n'], i['t']
|
100 |
-
if self._param.symbols_datatype == "quotes":
|
101 |
-
for i in response['data']:
|
102 |
-
i['Selling Price'] = i['a']
|
103 |
-
i['Buying Price'] = i['b']
|
104 |
-
i['Commodity Code'] = i['c']
|
105 |
-
i['Stock Exchange'] = i['e']
|
106 |
-
i['Highest Price'] = i['h']
|
107 |
-
i['Yesterday’s Closing Price'] = i['hc']
|
108 |
-
i['Lowest Price'] = i['l']
|
109 |
-
i['Opening Price'] = i['o']
|
110 |
-
i['Latest Price'] = i['p']
|
111 |
-
i['Market Quote Time'] = i['t']
|
112 |
-
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
|
113 |
-
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
|
114 |
-
if self._param.type == "news":
|
115 |
-
params = {
|
116 |
-
'contain': self._param.contain,
|
117 |
-
'filter': self._param.filter
|
118 |
-
}
|
119 |
-
response = requests.get(
|
120 |
-
url='https://open-data-api.jin10.com/data-api/news',
|
121 |
-
headers=headers, data=json.dumps(params))
|
122 |
-
response = response.json()
|
123 |
-
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
|
124 |
-
except Exception as e:
|
125 |
-
return Jin10.be_output("**ERROR**: " + str(e))
|
126 |
-
|
127 |
-
if not jin10_res:
|
128 |
-
return Jin10.be_output("")
|
129 |
-
|
130 |
-
return pd.DataFrame(jin10_res)
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
import json
|
17 |
+
from abc import ABC
|
18 |
+
import pandas as pd
|
19 |
+
import requests
|
20 |
+
from agent.component.base import ComponentBase, ComponentParamBase
|
21 |
+
|
22 |
+
|
23 |
+
class Jin10Param(ComponentParamBase):
|
24 |
+
"""
|
25 |
+
Define the Jin10 component parameters.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
super().__init__()
|
30 |
+
self.type = "flash"
|
31 |
+
self.secret_key = "xxx"
|
32 |
+
self.flash_type = '1'
|
33 |
+
self.calendar_type = 'cj'
|
34 |
+
self.calendar_datatype = 'data'
|
35 |
+
self.symbols_type = 'GOODS'
|
36 |
+
self.symbols_datatype = 'symbols'
|
37 |
+
self.contain = ""
|
38 |
+
self.filter = ""
|
39 |
+
|
40 |
+
def check(self):
|
41 |
+
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
|
42 |
+
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
|
43 |
+
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
|
44 |
+
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
|
45 |
+
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
|
46 |
+
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
|
47 |
+
|
48 |
+
|
49 |
+
class Jin10(ComponentBase, ABC):
|
50 |
+
component_name = "Jin10"
|
51 |
+
|
52 |
+
def _run(self, history, **kwargs):
|
53 |
+
ans = self.get_input()
|
54 |
+
ans = " - ".join(ans["content"]) if "content" in ans else ""
|
55 |
+
if not ans:
|
56 |
+
return Jin10.be_output("")
|
57 |
+
|
58 |
+
jin10_res = []
|
59 |
+
headers = {'secret-key': self._param.secret_key}
|
60 |
+
try:
|
61 |
+
if self._param.type == "flash":
|
62 |
+
params = {
|
63 |
+
'category': self._param.flash_type,
|
64 |
+
'contain': self._param.contain,
|
65 |
+
'filter': self._param.filter
|
66 |
+
}
|
67 |
+
response = requests.get(
|
68 |
+
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
|
69 |
+
headers=headers, data=json.dumps(params))
|
70 |
+
response = response.json()
|
71 |
+
for i in response['data']:
|
72 |
+
jin10_res.append({"content": i['data']['content']})
|
73 |
+
if self._param.type == "calendar":
|
74 |
+
params = {
|
75 |
+
'category': self._param.calendar_type
|
76 |
+
}
|
77 |
+
response = requests.get(
|
78 |
+
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
|
79 |
+
headers=headers, data=json.dumps(params))
|
80 |
+
|
81 |
+
response = response.json()
|
82 |
+
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
|
83 |
+
if self._param.type == "symbols":
|
84 |
+
params = {
|
85 |
+
'type': self._param.symbols_type
|
86 |
+
}
|
87 |
+
if self._param.symbols_datatype == "quotes":
|
88 |
+
params['codes'] = 'BTCUSD'
|
89 |
+
response = requests.get(
|
90 |
+
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
|
91 |
+
headers=headers, data=json.dumps(params))
|
92 |
+
response = response.json()
|
93 |
+
if self._param.symbols_datatype == "symbols":
|
94 |
+
for i in response['data']:
|
95 |
+
i['Commodity Code'] = i['c']
|
96 |
+
i['Stock Exchange'] = i['e']
|
97 |
+
i['Commodity Name'] = i['n']
|
98 |
+
i['Commodity Type'] = i['t']
|
99 |
+
del i['c'], i['e'], i['n'], i['t']
|
100 |
+
if self._param.symbols_datatype == "quotes":
|
101 |
+
for i in response['data']:
|
102 |
+
i['Selling Price'] = i['a']
|
103 |
+
i['Buying Price'] = i['b']
|
104 |
+
i['Commodity Code'] = i['c']
|
105 |
+
i['Stock Exchange'] = i['e']
|
106 |
+
i['Highest Price'] = i['h']
|
107 |
+
i['Yesterday’s Closing Price'] = i['hc']
|
108 |
+
i['Lowest Price'] = i['l']
|
109 |
+
i['Opening Price'] = i['o']
|
110 |
+
i['Latest Price'] = i['p']
|
111 |
+
i['Market Quote Time'] = i['t']
|
112 |
+
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
|
113 |
+
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
|
114 |
+
if self._param.type == "news":
|
115 |
+
params = {
|
116 |
+
'contain': self._param.contain,
|
117 |
+
'filter': self._param.filter
|
118 |
+
}
|
119 |
+
response = requests.get(
|
120 |
+
url='https://open-data-api.jin10.com/data-api/news',
|
121 |
+
headers=headers, data=json.dumps(params))
|
122 |
+
response = response.json()
|
123 |
+
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
|
124 |
+
except Exception as e:
|
125 |
+
return Jin10.be_output("**ERROR**: " + str(e))
|
126 |
+
|
127 |
+
if not jin10_res:
|
128 |
+
return Jin10.be_output("")
|
129 |
+
|
130 |
+
return pd.DataFrame(jin10_res)
|
agent/component/tushare.py
CHANGED
@@ -1,72 +1,72 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
import json
|
17 |
-
from abc import ABC
|
18 |
-
import pandas as pd
|
19 |
-
import time
|
20 |
-
import requests
|
21 |
-
from agent.component.base import ComponentBase, ComponentParamBase
|
22 |
-
|
23 |
-
|
24 |
-
class TuShareParam(ComponentParamBase):
|
25 |
-
"""
|
26 |
-
Define the TuShare component parameters.
|
27 |
-
"""
|
28 |
-
|
29 |
-
def __init__(self):
|
30 |
-
super().__init__()
|
31 |
-
self.token = "xxx"
|
32 |
-
self.src = "eastmoney"
|
33 |
-
self.start_date = "2024-01-01 09:00:00"
|
34 |
-
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
35 |
-
self.keyword = ""
|
36 |
-
|
37 |
-
def check(self):
|
38 |
-
self.check_valid_value(self.src, "Quick News Source",
|
39 |
-
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
|
40 |
-
|
41 |
-
|
42 |
-
class TuShare(ComponentBase, ABC):
|
43 |
-
component_name = "TuShare"
|
44 |
-
|
45 |
-
def _run(self, history, **kwargs):
|
46 |
-
ans = self.get_input()
|
47 |
-
ans = ",".join(ans["content"]) if "content" in ans else ""
|
48 |
-
if not ans:
|
49 |
-
return TuShare.be_output("")
|
50 |
-
|
51 |
-
try:
|
52 |
-
tus_res = []
|
53 |
-
params = {
|
54 |
-
"api_name": "news",
|
55 |
-
"token": self._param.token,
|
56 |
-
"params": {"src": self._param.src, "start_date": self._param.start_date,
|
57 |
-
"end_date": self._param.end_date}
|
58 |
-
}
|
59 |
-
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
|
60 |
-
response = response.json()
|
61 |
-
if response['code'] != 0:
|
62 |
-
return TuShare.be_output(response['msg'])
|
63 |
-
df = pd.DataFrame(response['data']['items'])
|
64 |
-
df.columns = response['data']['fields']
|
65 |
-
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
|
66 |
-
except Exception as e:
|
67 |
-
return TuShare.be_output("**ERROR**: " + str(e))
|
68 |
-
|
69 |
-
if not tus_res:
|
70 |
-
return TuShare.be_output("")
|
71 |
-
|
72 |
-
return pd.DataFrame(tus_res)
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
import json
|
17 |
+
from abc import ABC
|
18 |
+
import pandas as pd
|
19 |
+
import time
|
20 |
+
import requests
|
21 |
+
from agent.component.base import ComponentBase, ComponentParamBase
|
22 |
+
|
23 |
+
|
24 |
+
class TuShareParam(ComponentParamBase):
|
25 |
+
"""
|
26 |
+
Define the TuShare component parameters.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
super().__init__()
|
31 |
+
self.token = "xxx"
|
32 |
+
self.src = "eastmoney"
|
33 |
+
self.start_date = "2024-01-01 09:00:00"
|
34 |
+
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
35 |
+
self.keyword = ""
|
36 |
+
|
37 |
+
def check(self):
|
38 |
+
self.check_valid_value(self.src, "Quick News Source",
|
39 |
+
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
|
40 |
+
|
41 |
+
|
42 |
+
class TuShare(ComponentBase, ABC):
|
43 |
+
component_name = "TuShare"
|
44 |
+
|
45 |
+
def _run(self, history, **kwargs):
|
46 |
+
ans = self.get_input()
|
47 |
+
ans = ",".join(ans["content"]) if "content" in ans else ""
|
48 |
+
if not ans:
|
49 |
+
return TuShare.be_output("")
|
50 |
+
|
51 |
+
try:
|
52 |
+
tus_res = []
|
53 |
+
params = {
|
54 |
+
"api_name": "news",
|
55 |
+
"token": self._param.token,
|
56 |
+
"params": {"src": self._param.src, "start_date": self._param.start_date,
|
57 |
+
"end_date": self._param.end_date}
|
58 |
+
}
|
59 |
+
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
|
60 |
+
response = response.json()
|
61 |
+
if response['code'] != 0:
|
62 |
+
return TuShare.be_output(response['msg'])
|
63 |
+
df = pd.DataFrame(response['data']['items'])
|
64 |
+
df.columns = response['data']['fields']
|
65 |
+
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
|
66 |
+
except Exception as e:
|
67 |
+
return TuShare.be_output("**ERROR**: " + str(e))
|
68 |
+
|
69 |
+
if not tus_res:
|
70 |
+
return TuShare.be_output("")
|
71 |
+
|
72 |
+
return pd.DataFrame(tus_res)
|
agent/component/wencai.py
CHANGED
@@ -1,80 +1,80 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
from abc import ABC
|
17 |
-
import pandas as pd
|
18 |
-
import pywencai
|
19 |
-
from agent.component.base import ComponentBase, ComponentParamBase
|
20 |
-
|
21 |
-
|
22 |
-
class WenCaiParam(ComponentParamBase):
|
23 |
-
"""
|
24 |
-
Define the WenCai component parameters.
|
25 |
-
"""
|
26 |
-
|
27 |
-
def __init__(self):
|
28 |
-
super().__init__()
|
29 |
-
self.top_n = 10
|
30 |
-
self.query_type = "stock"
|
31 |
-
|
32 |
-
def check(self):
|
33 |
-
self.check_positive_integer(self.top_n, "Top N")
|
34 |
-
self.check_valid_value(self.query_type, "Query type",
|
35 |
-
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
|
36 |
-
'futures', 'lccp',
|
37 |
-
'foreign_exchange'])
|
38 |
-
|
39 |
-
|
40 |
-
class WenCai(ComponentBase, ABC):
|
41 |
-
component_name = "WenCai"
|
42 |
-
|
43 |
-
def _run(self, history, **kwargs):
|
44 |
-
ans = self.get_input()
|
45 |
-
ans = ",".join(ans["content"]) if "content" in ans else ""
|
46 |
-
if not ans:
|
47 |
-
return WenCai.be_output("")
|
48 |
-
|
49 |
-
try:
|
50 |
-
wencai_res = []
|
51 |
-
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
|
52 |
-
if isinstance(res, pd.DataFrame):
|
53 |
-
wencai_res.append({"content": res.to_markdown()})
|
54 |
-
if isinstance(res, dict):
|
55 |
-
for item in res.items():
|
56 |
-
if isinstance(item[1], list):
|
57 |
-
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
|
58 |
-
continue
|
59 |
-
if isinstance(item[1], str):
|
60 |
-
wencai_res.append({"content": item[0] + "\n" + item[1]})
|
61 |
-
continue
|
62 |
-
if isinstance(item[1], dict):
|
63 |
-
if "meta" in item[1].keys():
|
64 |
-
continue
|
65 |
-
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
|
66 |
-
continue
|
67 |
-
if isinstance(item[1], pd.DataFrame):
|
68 |
-
if "image_url" in item[1].columns:
|
69 |
-
continue
|
70 |
-
wencai_res.append({"content": item[1].to_markdown()})
|
71 |
-
continue
|
72 |
-
|
73 |
-
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
|
74 |
-
except Exception as e:
|
75 |
-
return WenCai.be_output("**ERROR**: " + str(e))
|
76 |
-
|
77 |
-
if not wencai_res:
|
78 |
-
return WenCai.be_output("")
|
79 |
-
|
80 |
-
return pd.DataFrame(wencai_res)
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
from abc import ABC
|
17 |
+
import pandas as pd
|
18 |
+
import pywencai
|
19 |
+
from agent.component.base import ComponentBase, ComponentParamBase
|
20 |
+
|
21 |
+
|
22 |
+
class WenCaiParam(ComponentParamBase):
|
23 |
+
"""
|
24 |
+
Define the WenCai component parameters.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
super().__init__()
|
29 |
+
self.top_n = 10
|
30 |
+
self.query_type = "stock"
|
31 |
+
|
32 |
+
def check(self):
|
33 |
+
self.check_positive_integer(self.top_n, "Top N")
|
34 |
+
self.check_valid_value(self.query_type, "Query type",
|
35 |
+
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
|
36 |
+
'futures', 'lccp',
|
37 |
+
'foreign_exchange'])
|
38 |
+
|
39 |
+
|
40 |
+
class WenCai(ComponentBase, ABC):
|
41 |
+
component_name = "WenCai"
|
42 |
+
|
43 |
+
def _run(self, history, **kwargs):
|
44 |
+
ans = self.get_input()
|
45 |
+
ans = ",".join(ans["content"]) if "content" in ans else ""
|
46 |
+
if not ans:
|
47 |
+
return WenCai.be_output("")
|
48 |
+
|
49 |
+
try:
|
50 |
+
wencai_res = []
|
51 |
+
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
|
52 |
+
if isinstance(res, pd.DataFrame):
|
53 |
+
wencai_res.append({"content": res.to_markdown()})
|
54 |
+
if isinstance(res, dict):
|
55 |
+
for item in res.items():
|
56 |
+
if isinstance(item[1], list):
|
57 |
+
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
|
58 |
+
continue
|
59 |
+
if isinstance(item[1], str):
|
60 |
+
wencai_res.append({"content": item[0] + "\n" + item[1]})
|
61 |
+
continue
|
62 |
+
if isinstance(item[1], dict):
|
63 |
+
if "meta" in item[1].keys():
|
64 |
+
continue
|
65 |
+
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
|
66 |
+
continue
|
67 |
+
if isinstance(item[1], pd.DataFrame):
|
68 |
+
if "image_url" in item[1].columns:
|
69 |
+
continue
|
70 |
+
wencai_res.append({"content": item[1].to_markdown()})
|
71 |
+
continue
|
72 |
+
|
73 |
+
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
|
74 |
+
except Exception as e:
|
75 |
+
return WenCai.be_output("**ERROR**: " + str(e))
|
76 |
+
|
77 |
+
if not wencai_res:
|
78 |
+
return WenCai.be_output("")
|
79 |
+
|
80 |
+
return pd.DataFrame(wencai_res)
|
agent/component/yahoofinance.py
CHANGED
@@ -1,84 +1,84 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
import logging
|
17 |
-
from abc import ABC
|
18 |
-
import pandas as pd
|
19 |
-
from agent.component.base import ComponentBase, ComponentParamBase
|
20 |
-
import yfinance as yf
|
21 |
-
|
22 |
-
|
23 |
-
class YahooFinanceParam(ComponentParamBase):
|
24 |
-
"""
|
25 |
-
Define the YahooFinance component parameters.
|
26 |
-
"""
|
27 |
-
|
28 |
-
def __init__(self):
|
29 |
-
super().__init__()
|
30 |
-
self.info = True
|
31 |
-
self.history = False
|
32 |
-
self.count = False
|
33 |
-
self.financials = False
|
34 |
-
self.income_stmt = False
|
35 |
-
self.balance_sheet = False
|
36 |
-
self.cash_flow_statement = False
|
37 |
-
self.news = True
|
38 |
-
|
39 |
-
def check(self):
|
40 |
-
self.check_boolean(self.info, "get all stock info")
|
41 |
-
self.check_boolean(self.history, "get historical market data")
|
42 |
-
self.check_boolean(self.count, "show share count")
|
43 |
-
self.check_boolean(self.financials, "show financials")
|
44 |
-
self.check_boolean(self.income_stmt, "income statement")
|
45 |
-
self.check_boolean(self.balance_sheet, "balance sheet")
|
46 |
-
self.check_boolean(self.cash_flow_statement, "cash flow statement")
|
47 |
-
self.check_boolean(self.news, "show news")
|
48 |
-
|
49 |
-
|
50 |
-
class YahooFinance(ComponentBase, ABC):
|
51 |
-
component_name = "YahooFinance"
|
52 |
-
|
53 |
-
def _run(self, history, **kwargs):
|
54 |
-
ans = self.get_input()
|
55 |
-
ans = "".join(ans["content"]) if "content" in ans else ""
|
56 |
-
if not ans:
|
57 |
-
return YahooFinance.be_output("")
|
58 |
-
|
59 |
-
yohoo_res = []
|
60 |
-
try:
|
61 |
-
msft = yf.Ticker(ans)
|
62 |
-
if self._param.info:
|
63 |
-
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
|
64 |
-
if self._param.history:
|
65 |
-
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
|
66 |
-
if self._param.financials:
|
67 |
-
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
|
68 |
-
if self._param.balance_sheet:
|
69 |
-
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
|
70 |
-
yohoo_res.append(
|
71 |
-
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
|
72 |
-
if self._param.cash_flow_statement:
|
73 |
-
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
|
74 |
-
yohoo_res.append(
|
75 |
-
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
|
76 |
-
if self._param.news:
|
77 |
-
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
|
78 |
-
except Exception:
|
79 |
-
logging.exception("YahooFinance got exception")
|
80 |
-
|
81 |
-
if not yohoo_res:
|
82 |
-
return YahooFinance.be_output("")
|
83 |
-
|
84 |
-
return pd.DataFrame(yohoo_res)
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
import logging
|
17 |
+
from abc import ABC
|
18 |
+
import pandas as pd
|
19 |
+
from agent.component.base import ComponentBase, ComponentParamBase
|
20 |
+
import yfinance as yf
|
21 |
+
|
22 |
+
|
23 |
+
class YahooFinanceParam(ComponentParamBase):
|
24 |
+
"""
|
25 |
+
Define the YahooFinance component parameters.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
super().__init__()
|
30 |
+
self.info = True
|
31 |
+
self.history = False
|
32 |
+
self.count = False
|
33 |
+
self.financials = False
|
34 |
+
self.income_stmt = False
|
35 |
+
self.balance_sheet = False
|
36 |
+
self.cash_flow_statement = False
|
37 |
+
self.news = True
|
38 |
+
|
39 |
+
def check(self):
|
40 |
+
self.check_boolean(self.info, "get all stock info")
|
41 |
+
self.check_boolean(self.history, "get historical market data")
|
42 |
+
self.check_boolean(self.count, "show share count")
|
43 |
+
self.check_boolean(self.financials, "show financials")
|
44 |
+
self.check_boolean(self.income_stmt, "income statement")
|
45 |
+
self.check_boolean(self.balance_sheet, "balance sheet")
|
46 |
+
self.check_boolean(self.cash_flow_statement, "cash flow statement")
|
47 |
+
self.check_boolean(self.news, "show news")
|
48 |
+
|
49 |
+
|
50 |
+
class YahooFinance(ComponentBase, ABC):
|
51 |
+
component_name = "YahooFinance"
|
52 |
+
|
53 |
+
def _run(self, history, **kwargs):
|
54 |
+
ans = self.get_input()
|
55 |
+
ans = "".join(ans["content"]) if "content" in ans else ""
|
56 |
+
if not ans:
|
57 |
+
return YahooFinance.be_output("")
|
58 |
+
|
59 |
+
yohoo_res = []
|
60 |
+
try:
|
61 |
+
msft = yf.Ticker(ans)
|
62 |
+
if self._param.info:
|
63 |
+
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
|
64 |
+
if self._param.history:
|
65 |
+
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
|
66 |
+
if self._param.financials:
|
67 |
+
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
|
68 |
+
if self._param.balance_sheet:
|
69 |
+
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
|
70 |
+
yohoo_res.append(
|
71 |
+
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
|
72 |
+
if self._param.cash_flow_statement:
|
73 |
+
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
|
74 |
+
yohoo_res.append(
|
75 |
+
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
|
76 |
+
if self._param.news:
|
77 |
+
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
|
78 |
+
except Exception:
|
79 |
+
logging.exception("YahooFinance got exception")
|
80 |
+
|
81 |
+
if not yohoo_res:
|
82 |
+
return YahooFinance.be_output("")
|
83 |
+
|
84 |
+
return pd.DataFrame(yohoo_res)
|
agent/templates/investment_advisor.json
CHANGED
@@ -1,571 +1,571 @@
|
|
1 |
-
{
|
2 |
-
"id": 8,
|
3 |
-
"title": "Intelligent investment advisor",
|
4 |
-
"description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.",
|
5 |
-
"canvas_type": "chatbot",
|
6 |
-
"dsl": {
|
7 |
-
"answer": [],
|
8 |
-
"components": {
|
9 |
-
"begin": {
|
10 |
-
"obj": {
|
11 |
-
"component_name": "Begin",
|
12 |
-
"params": {
|
13 |
-
"prologue": "Hi there!"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"downstream": [
|
17 |
-
"Answer:NeatLandsWave"
|
18 |
-
],
|
19 |
-
"upstream": []
|
20 |
-
},
|
21 |
-
"WenCai:TenParksOpen": {
|
22 |
-
"obj": {
|
23 |
-
"component_name": "WenCai",
|
24 |
-
"params": {
|
25 |
-
"query_type": "stock",
|
26 |
-
"top_n": 5
|
27 |
-
}
|
28 |
-
},
|
29 |
-
"downstream": [
|
30 |
-
"Generate:RottenPianosUnite"
|
31 |
-
],
|
32 |
-
"upstream": [
|
33 |
-
"Answer:NeatLandsWave"
|
34 |
-
]
|
35 |
-
},
|
36 |
-
"AkShare:CalmHotelsKnow": {
|
37 |
-
"obj": {
|
38 |
-
"component_name": "AkShare",
|
39 |
-
"params": {
|
40 |
-
"top_n": 10
|
41 |
-
}
|
42 |
-
},
|
43 |
-
"downstream": [
|
44 |
-
"Generate:RottenPianosUnite"
|
45 |
-
],
|
46 |
-
"upstream": [
|
47 |
-
"KeywordExtract:BreezyGoatsRead"
|
48 |
-
]
|
49 |
-
},
|
50 |
-
"Answer:NeatLandsWave": {
|
51 |
-
"obj": {
|
52 |
-
"component_name": "Answer",
|
53 |
-
"params": {}
|
54 |
-
},
|
55 |
-
"downstream": [
|
56 |
-
"WenCai:TenParksOpen",
|
57 |
-
"KeywordExtract:BreezyGoatsRead"
|
58 |
-
],
|
59 |
-
"upstream": [
|
60 |
-
"begin",
|
61 |
-
"Generate:RottenPianosUnite"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
"Generate:RottenPianosUnite": {
|
65 |
-
"obj": {
|
66 |
-
"component_name": "Generate",
|
67 |
-
"params": {
|
68 |
-
"cite": true,
|
69 |
-
"frequency_penalty": 0.7,
|
70 |
-
"llm_id": "deepseek-chat@DeepSeek",
|
71 |
-
"max_tokens": 256,
|
72 |
-
"message_history_window_size": 0,
|
73 |
-
"parameters": [
|
74 |
-
{
|
75 |
-
"component_id": "WenCai:TenParksOpen",
|
76 |
-
"id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
|
77 |
-
"key": "wencai_input"
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"component_id": "AkShare:CalmHotelsKnow",
|
81 |
-
"id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
|
82 |
-
"key": "ak_input"
|
83 |
-
}
|
84 |
-
],
|
85 |
-
"presence_penalty": 0.4,
|
86 |
-
"prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
|
87 |
-
"temperature": 0.1,
|
88 |
-
"top_p": 0.3
|
89 |
-
}
|
90 |
-
},
|
91 |
-
"downstream": [
|
92 |
-
"Answer:NeatLandsWave"
|
93 |
-
],
|
94 |
-
"upstream": [
|
95 |
-
"WenCai:TenParksOpen",
|
96 |
-
"AkShare:CalmHotelsKnow"
|
97 |
-
]
|
98 |
-
},
|
99 |
-
"KeywordExtract:BreezyGoatsRead": {
|
100 |
-
"obj": {
|
101 |
-
"component_name": "KeywordExtract",
|
102 |
-
"params": {
|
103 |
-
"frequencyPenaltyEnabled": true,
|
104 |
-
"frequency_penalty": 0.7,
|
105 |
-
"llm_id": "deepseek-chat@DeepSeek",
|
106 |
-
"maxTokensEnabled": true,
|
107 |
-
"max_tokens": 256,
|
108 |
-
"parameter": "Precise",
|
109 |
-
"presencePenaltyEnabled": true,
|
110 |
-
"presence_penalty": 0.4,
|
111 |
-
"temperature": 0.1,
|
112 |
-
"temperatureEnabled": true,
|
113 |
-
"topPEnabled": true,
|
114 |
-
"top_n": 2,
|
115 |
-
"top_p": 0.3
|
116 |
-
}
|
117 |
-
},
|
118 |
-
"downstream": [
|
119 |
-
"AkShare:CalmHotelsKnow"
|
120 |
-
],
|
121 |
-
"upstream": [
|
122 |
-
"Answer:NeatLandsWave"
|
123 |
-
]
|
124 |
-
}
|
125 |
-
},
|
126 |
-
"graph": {
|
127 |
-
"nodes": [
|
128 |
-
{
|
129 |
-
"data": {
|
130 |
-
"form": {
|
131 |
-
"prologue": "Hi there!"
|
132 |
-
},
|
133 |
-
"label": "Begin",
|
134 |
-
"name": "Opening"
|
135 |
-
},
|
136 |
-
"dragging": false,
|
137 |
-
"height": 44,
|
138 |
-
"id": "begin",
|
139 |
-
"position": {
|
140 |
-
"x": -521.8118264317484,
|
141 |
-
"y": -27.999467037576665
|
142 |
-
},
|
143 |
-
"positionAbsolute": {
|
144 |
-
"x": -521.8118264317484,
|
145 |
-
"y": -27.999467037576665
|
146 |
-
},
|
147 |
-
"selected": false,
|
148 |
-
"sourcePosition": "left",
|
149 |
-
"targetPosition": "right",
|
150 |
-
"type": "beginNode",
|
151 |
-
"width": 100
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"data": {
|
155 |
-
"form": {
|
156 |
-
"query_type": "stock",
|
157 |
-
"top_n": 5
|
158 |
-
},
|
159 |
-
"label": "WenCai",
|
160 |
-
"name": "Wencai"
|
161 |
-
},
|
162 |
-
"dragging": false,
|
163 |
-
"height": 44,
|
164 |
-
"id": "WenCai:TenParksOpen",
|
165 |
-
"position": {
|
166 |
-
"x": -13.030801663267397,
|
167 |
-
"y": -30.557141660610256
|
168 |
-
},
|
169 |
-
"positionAbsolute": {
|
170 |
-
"x": -13.030801663267397,
|
171 |
-
"y": -30.557141660610256
|
172 |
-
},
|
173 |
-
"selected": false,
|
174 |
-
"sourcePosition": "right",
|
175 |
-
"targetPosition": "left",
|
176 |
-
"type": "ragNode",
|
177 |
-
"width": 200
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"data": {
|
181 |
-
"form": {
|
182 |
-
"top_n": 10
|
183 |
-
},
|
184 |
-
"label": "AkShare",
|
185 |
-
"name": "AKShare"
|
186 |
-
},
|
187 |
-
"dragging": false,
|
188 |
-
"height": 44,
|
189 |
-
"id": "AkShare:CalmHotelsKnow",
|
190 |
-
"position": {
|
191 |
-
"x": 267.17349571786156,
|
192 |
-
"y": 100.01281266803943
|
193 |
-
},
|
194 |
-
"positionAbsolute": {
|
195 |
-
"x": 267.17349571786156,
|
196 |
-
"y": 100.01281266803943
|
197 |
-
},
|
198 |
-
"selected": false,
|
199 |
-
"sourcePosition": "right",
|
200 |
-
"targetPosition": "left",
|
201 |
-
"type": "ragNode",
|
202 |
-
"width": 200
|
203 |
-
},
|
204 |
-
{
|
205 |
-
"data": {
|
206 |
-
"form": {},
|
207 |
-
"label": "Answer",
|
208 |
-
"name": "Interact"
|
209 |
-
},
|
210 |
-
"dragging": false,
|
211 |
-
"height": 44,
|
212 |
-
"id": "Answer:NeatLandsWave",
|
213 |
-
"position": {
|
214 |
-
"x": -304.0612563145512,
|
215 |
-
"y": -29.054278091837944
|
216 |
-
},
|
217 |
-
"positionAbsolute": {
|
218 |
-
"x": -304.0612563145512,
|
219 |
-
"y": -29.054278091837944
|
220 |
-
},
|
221 |
-
"selected": false,
|
222 |
-
"sourcePosition": "right",
|
223 |
-
"targetPosition": "left",
|
224 |
-
"type": "logicNode",
|
225 |
-
"width": 200
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"data": {
|
229 |
-
"form": {
|
230 |
-
"cite": true,
|
231 |
-
"frequencyPenaltyEnabled": true,
|
232 |
-
"frequency_penalty": 0.7,
|
233 |
-
"llm_id": "deepseek-chat@DeepSeek",
|
234 |
-
"maxTokensEnabled": true,
|
235 |
-
"max_tokens": 256,
|
236 |
-
"message_history_window_size": 0,
|
237 |
-
"parameter": "Precise",
|
238 |
-
"parameters": [
|
239 |
-
{
|
240 |
-
"component_id": "WenCai:TenParksOpen",
|
241 |
-
"id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
|
242 |
-
"key": "wencai_input"
|
243 |
-
},
|
244 |
-
{
|
245 |
-
"component_id": "AkShare:CalmHotelsKnow",
|
246 |
-
"id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
|
247 |
-
"key": "ak_input"
|
248 |
-
}
|
249 |
-
],
|
250 |
-
"presencePenaltyEnabled": true,
|
251 |
-
"presence_penalty": 0.4,
|
252 |
-
"prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
|
253 |
-
"temperature": 0.1,
|
254 |
-
"temperatureEnabled": true,
|
255 |
-
"topPEnabled": true,
|
256 |
-
"top_p": 0.3
|
257 |
-
},
|
258 |
-
"label": "Generate",
|
259 |
-
"name": "LLM"
|
260 |
-
},
|
261 |
-
"dragging": false,
|
262 |
-
"height": 170,
|
263 |
-
"id": "Generate:RottenPianosUnite",
|
264 |
-
"position": {
|
265 |
-
"x": -16.477598988611703,
|
266 |
-
"y": -251.90091743639417
|
267 |
-
},
|
268 |
-
"positionAbsolute": {
|
269 |
-
"x": -16.477598988611703,
|
270 |
-
"y": -251.90091743639417
|
271 |
-
},
|
272 |
-
"selected": false,
|
273 |
-
"sourcePosition": "right",
|
274 |
-
"targetPosition": "left",
|
275 |
-
"type": "generateNode",
|
276 |
-
"width": 200
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"data": {
|
280 |
-
"form": {
|
281 |
-
"frequencyPenaltyEnabled": true,
|
282 |
-
"frequency_penalty": 0.7,
|
283 |
-
"llm_id": "deepseek-chat@DeepSeek",
|
284 |
-
"maxTokensEnabled": true,
|
285 |
-
"max_tokens": 256,
|
286 |
-
"parameter": "Precise",
|
287 |
-
"presencePenaltyEnabled": true,
|
288 |
-
"presence_penalty": 0.4,
|
289 |
-
"temperature": 0.1,
|
290 |
-
"temperatureEnabled": true,
|
291 |
-
"topPEnabled": true,
|
292 |
-
"top_n": 2,
|
293 |
-
"top_p": 0.3
|
294 |
-
},
|
295 |
-
"label": "KeywordExtract",
|
296 |
-
"name": "Keywords"
|
297 |
-
},
|
298 |
-
"dragging": false,
|
299 |
-
"height": 86,
|
300 |
-
"id": "KeywordExtract:BreezyGoatsRead",
|
301 |
-
"position": {
|
302 |
-
"x": -17.690374759999543,
|
303 |
-
"y": 80.39964392387697
|
304 |
-
},
|
305 |
-
"positionAbsolute": {
|
306 |
-
"x": -17.690374759999543,
|
307 |
-
"y": 80.39964392387697
|
308 |
-
},
|
309 |
-
"selected": false,
|
310 |
-
"sourcePosition": "right",
|
311 |
-
"targetPosition": "left",
|
312 |
-
"type": "keywordNode",
|
313 |
-
"width": 200
|
314 |
-
},
|
315 |
-
{
|
316 |
-
"data": {
|
317 |
-
"form": {
|
318 |
-
"text": "Receives the user's financial inquiries and displays the large model's response to financial questions."
|
319 |
-
},
|
320 |
-
"label": "Note",
|
321 |
-
"name": "N: Interact"
|
322 |
-
},
|
323 |
-
"dragging": false,
|
324 |
-
"height": 162,
|
325 |
-
"id": "Note:FuzzyPoetsLearn",
|
326 |
-
"position": {
|
327 |
-
"x": -296.5982116419186,
|
328 |
-
"y": 38.77567426067935
|
329 |
-
},
|
330 |
-
"positionAbsolute": {
|
331 |
-
"x": -296.5982116419186,
|
332 |
-
"y": 38.77567426067935
|
333 |
-
},
|
334 |
-
"resizing": false,
|
335 |
-
"selected": false,
|
336 |
-
"sourcePosition": "right",
|
337 |
-
"style": {
|
338 |
-
"height": 162,
|
339 |
-
"width": 214
|
340 |
-
},
|
341 |
-
"targetPosition": "left",
|
342 |
-
"type": "noteNode",
|
343 |
-
"width": 214,
|
344 |
-
"dragHandle": ".note-drag-handle"
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"data": {
|
348 |
-
"form": {
|
349 |
-
"text": "Extracts keywords based on the user's financial questions for better retrieval."
|
350 |
-
},
|
351 |
-
"label": "Note",
|
352 |
-
"name": "N: Keywords"
|
353 |
-
},
|
354 |
-
"dragging": false,
|
355 |
-
"height": 155,
|
356 |
-
"id": "Note:FlatBagsRun",
|
357 |
-
"position": {
|
358 |
-
"x": -14.82895160277127,
|
359 |
-
"y": 186.52508153680787
|
360 |
-
},
|
361 |
-
"positionAbsolute": {
|
362 |
-
"x": -14.82895160277127,
|
363 |
-
"y": 186.52508153680787
|
364 |
-
},
|
365 |
-
"resizing": false,
|
366 |
-
"selected": false,
|
367 |
-
"sourcePosition": "right",
|
368 |
-
"style": {
|
369 |
-
"height": 155,
|
370 |
-
"width": 213
|
371 |
-
},
|
372 |
-
"targetPosition": "left",
|
373 |
-
"type": "noteNode",
|
374 |
-
"width": 213,
|
375 |
-
"dragHandle": ".note-drag-handle"
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"data": {
|
379 |
-
"form": {
|
380 |
-
"text": "Searches on akshare for the latest news about economics based on the keywords and returns the results."
|
381 |
-
},
|
382 |
-
"label": "Note",
|
383 |
-
"name": "N: AKShare"
|
384 |
-
},
|
385 |
-
"dragging": false,
|
386 |
-
"height": 128,
|
387 |
-
"id": "Note:WarmClothsSort",
|
388 |
-
"position": {
|
389 |
-
"x": 573.7653319987893,
|
390 |
-
"y": 102.64512355369035
|
391 |
-
},
|
392 |
-
"positionAbsolute": {
|
393 |
-
"x": 573.7653319987893,
|
394 |
-
"y": 102.64512355369035
|
395 |
-
},
|
396 |
-
"resizing": false,
|
397 |
-
"selected": false,
|
398 |
-
"sourcePosition": "right",
|
399 |
-
"style": {
|
400 |
-
"height": 128,
|
401 |
-
"width": 283
|
402 |
-
},
|
403 |
-
"targetPosition": "left",
|
404 |
-
"type": "noteNode",
|
405 |
-
"width": 283,
|
406 |
-
"dragHandle": ".note-drag-handle"
|
407 |
-
},
|
408 |
-
{
|
409 |
-
"data": {
|
410 |
-
"form": {
|
411 |
-
"text": "Searches by Wencai to select stocks that satisfy user mentioned conditions."
|
412 |
-
},
|
413 |
-
"label": "Note",
|
414 |
-
"name": "N: Wencai"
|
415 |
-
},
|
416 |
-
"dragging": false,
|
417 |
-
"height": 128,
|
418 |
-
"id": "Note:TiredReadersWash",
|
419 |
-
"position": {
|
420 |
-
"x": 571.4274792499875,
|
421 |
-
"y": -37.07105560150117
|
422 |
-
},
|
423 |
-
"positionAbsolute": {
|
424 |
-
"x": 571.4274792499875,
|
425 |
-
"y": -37.07105560150117
|
426 |
-
},
|
427 |
-
"resizing": false,
|
428 |
-
"selected": false,
|
429 |
-
"sourcePosition": "right",
|
430 |
-
"style": {
|
431 |
-
"height": 128,
|
432 |
-
"width": 285
|
433 |
-
},
|
434 |
-
"targetPosition": "left",
|
435 |
-
"type": "noteNode",
|
436 |
-
"width": 285,
|
437 |
-
"dragHandle": ".note-drag-handle"
|
438 |
-
},
|
439 |
-
{
|
440 |
-
"data": {
|
441 |
-
"form": {
|
442 |
-
"text": "The large model answers the user's medical health questions based on the searched and retrieved content."
|
443 |
-
},
|
444 |
-
"label": "Note",
|
445 |
-
"name": "N: LLM"
|
446 |
-
},
|
447 |
-
"dragging": false,
|
448 |
-
"height": 163,
|
449 |
-
"id": "Note:TameBoatsType",
|
450 |
-
"position": {
|
451 |
-
"x": -7.849538042569293,
|
452 |
-
"y": -427.90526378748035
|
453 |
-
},
|
454 |
-
"positionAbsolute": {
|
455 |
-
"x": -7.849538042569293,
|
456 |
-
"y": -427.90526378748035
|
457 |
-
},
|
458 |
-
"resizing": false,
|
459 |
-
"selected": false,
|
460 |
-
"sourcePosition": "right",
|
461 |
-
"style": {
|
462 |
-
"height": 163,
|
463 |
-
"width": 212
|
464 |
-
},
|
465 |
-
"targetPosition": "left",
|
466 |
-
"type": "noteNode",
|
467 |
-
"width": 212,
|
468 |
-
"dragHandle": ".note-drag-handle"
|
469 |
-
}
|
470 |
-
],
|
471 |
-
"edges": [
|
472 |
-
{
|
473 |
-
"id": "reactflow__edge-begin-Answer:NeatLandsWavec",
|
474 |
-
"markerEnd": "logo",
|
475 |
-
"source": "begin",
|
476 |
-
"sourceHandle": null,
|
477 |
-
"style": {
|
478 |
-
"stroke": "rgb(202 197 245)",
|
479 |
-
"strokeWidth": 2
|
480 |
-
},
|
481 |
-
"target": "Answer:NeatLandsWave",
|
482 |
-
"targetHandle": "c",
|
483 |
-
"type": "buttonEdge"
|
484 |
-
},
|
485 |
-
{
|
486 |
-
"id": "reactflow__edge-Answer:NeatLandsWaveb-WenCai:TenParksOpenc",
|
487 |
-
"markerEnd": "logo",
|
488 |
-
"source": "Answer:NeatLandsWave",
|
489 |
-
"sourceHandle": "b",
|
490 |
-
"style": {
|
491 |
-
"stroke": "rgb(202 197 245)",
|
492 |
-
"strokeWidth": 2
|
493 |
-
},
|
494 |
-
"target": "WenCai:TenParksOpen",
|
495 |
-
"targetHandle": "c",
|
496 |
-
"type": "buttonEdge"
|
497 |
-
},
|
498 |
-
{
|
499 |
-
"id": "reactflow__edge-KeywordExtract:BreezyGoatsReadb-AkShare:CalmHotelsKnowc",
|
500 |
-
"markerEnd": "logo",
|
501 |
-
"source": "KeywordExtract:BreezyGoatsRead",
|
502 |
-
"sourceHandle": "b",
|
503 |
-
"style": {
|
504 |
-
"stroke": "rgb(202 197 245)",
|
505 |
-
"strokeWidth": 2
|
506 |
-
},
|
507 |
-
"target": "AkShare:CalmHotelsKnow",
|
508 |
-
"targetHandle": "c",
|
509 |
-
"type": "buttonEdge"
|
510 |
-
},
|
511 |
-
{
|
512 |
-
"id": "reactflow__edge-WenCai:TenParksOpenb-Generate:RottenPianosUniteb",
|
513 |
-
"markerEnd": "logo",
|
514 |
-
"source": "WenCai:TenParksOpen",
|
515 |
-
"sourceHandle": "b",
|
516 |
-
"style": {
|
517 |
-
"stroke": "rgb(202 197 245)",
|
518 |
-
"strokeWidth": 2
|
519 |
-
},
|
520 |
-
"target": "Generate:RottenPianosUnite",
|
521 |
-
"targetHandle": "b",
|
522 |
-
"type": "buttonEdge"
|
523 |
-
},
|
524 |
-
{
|
525 |
-
"id": "reactflow__edge-AkShare:CalmHotelsKnowb-Generate:RottenPianosUniteb",
|
526 |
-
"markerEnd": "logo",
|
527 |
-
"source": "AkShare:CalmHotelsKnow",
|
528 |
-
"sourceHandle": "b",
|
529 |
-
"style": {
|
530 |
-
"stroke": "rgb(202 197 245)",
|
531 |
-
"strokeWidth": 2
|
532 |
-
},
|
533 |
-
"target": "Generate:RottenPianosUnite",
|
534 |
-
"targetHandle": "b",
|
535 |
-
"type": "buttonEdge"
|
536 |
-
},
|
537 |
-
{
|
538 |
-
"id": "reactflow__edge-Generate:RottenPianosUnitec-Answer:NeatLandsWavec",
|
539 |
-
"markerEnd": "logo",
|
540 |
-
"source": "Generate:RottenPianosUnite",
|
541 |
-
"sourceHandle": "c",
|
542 |
-
"style": {
|
543 |
-
"stroke": "rgb(202 197 245)",
|
544 |
-
"strokeWidth": 2
|
545 |
-
},
|
546 |
-
"target": "Answer:NeatLandsWave",
|
547 |
-
"targetHandle": "c",
|
548 |
-
"type": "buttonEdge"
|
549 |
-
},
|
550 |
-
{
|
551 |
-
"id": "reactflow__edge-Answer:NeatLandsWaveb-KeywordExtract:BreezyGoatsReadc",
|
552 |
-
"markerEnd": "logo",
|
553 |
-
"source": "Answer:NeatLandsWave",
|
554 |
-
"sourceHandle": "b",
|
555 |
-
"style": {
|
556 |
-
"stroke": "rgb(202 197 245)",
|
557 |
-
"strokeWidth": 2
|
558 |
-
},
|
559 |
-
"target": "KeywordExtract:BreezyGoatsRead",
|
560 |
-
"targetHandle": "c",
|
561 |
-
"type": "buttonEdge"
|
562 |
-
}
|
563 |
-
]
|
564 |
-
},
|
565 |
-
"history": [],
|
566 |
-
"messages": [],
|
567 |
-
"path": [],
|
568 |
-
"reference": []
|
569 |
-
},
|
570 |
-
"avatar": ""
|
571 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"id": 8,
|
3 |
+
"title": "Intelligent investment advisor",
|
4 |
+
"description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.",
|
5 |
+
"canvas_type": "chatbot",
|
6 |
+
"dsl": {
|
7 |
+
"answer": [],
|
8 |
+
"components": {
|
9 |
+
"begin": {
|
10 |
+
"obj": {
|
11 |
+
"component_name": "Begin",
|
12 |
+
"params": {
|
13 |
+
"prologue": "Hi there!"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"downstream": [
|
17 |
+
"Answer:NeatLandsWave"
|
18 |
+
],
|
19 |
+
"upstream": []
|
20 |
+
},
|
21 |
+
"WenCai:TenParksOpen": {
|
22 |
+
"obj": {
|
23 |
+
"component_name": "WenCai",
|
24 |
+
"params": {
|
25 |
+
"query_type": "stock",
|
26 |
+
"top_n": 5
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"downstream": [
|
30 |
+
"Generate:RottenPianosUnite"
|
31 |
+
],
|
32 |
+
"upstream": [
|
33 |
+
"Answer:NeatLandsWave"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"AkShare:CalmHotelsKnow": {
|
37 |
+
"obj": {
|
38 |
+
"component_name": "AkShare",
|
39 |
+
"params": {
|
40 |
+
"top_n": 10
|
41 |
+
}
|
42 |
+
},
|
43 |
+
"downstream": [
|
44 |
+
"Generate:RottenPianosUnite"
|
45 |
+
],
|
46 |
+
"upstream": [
|
47 |
+
"KeywordExtract:BreezyGoatsRead"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"Answer:NeatLandsWave": {
|
51 |
+
"obj": {
|
52 |
+
"component_name": "Answer",
|
53 |
+
"params": {}
|
54 |
+
},
|
55 |
+
"downstream": [
|
56 |
+
"WenCai:TenParksOpen",
|
57 |
+
"KeywordExtract:BreezyGoatsRead"
|
58 |
+
],
|
59 |
+
"upstream": [
|
60 |
+
"begin",
|
61 |
+
"Generate:RottenPianosUnite"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
"Generate:RottenPianosUnite": {
|
65 |
+
"obj": {
|
66 |
+
"component_name": "Generate",
|
67 |
+
"params": {
|
68 |
+
"cite": true,
|
69 |
+
"frequency_penalty": 0.7,
|
70 |
+
"llm_id": "deepseek-chat@DeepSeek",
|
71 |
+
"max_tokens": 256,
|
72 |
+
"message_history_window_size": 0,
|
73 |
+
"parameters": [
|
74 |
+
{
|
75 |
+
"component_id": "WenCai:TenParksOpen",
|
76 |
+
"id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
|
77 |
+
"key": "wencai_input"
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"component_id": "AkShare:CalmHotelsKnow",
|
81 |
+
"id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
|
82 |
+
"key": "ak_input"
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"presence_penalty": 0.4,
|
86 |
+
"prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
|
87 |
+
"temperature": 0.1,
|
88 |
+
"top_p": 0.3
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"downstream": [
|
92 |
+
"Answer:NeatLandsWave"
|
93 |
+
],
|
94 |
+
"upstream": [
|
95 |
+
"WenCai:TenParksOpen",
|
96 |
+
"AkShare:CalmHotelsKnow"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
"KeywordExtract:BreezyGoatsRead": {
|
100 |
+
"obj": {
|
101 |
+
"component_name": "KeywordExtract",
|
102 |
+
"params": {
|
103 |
+
"frequencyPenaltyEnabled": true,
|
104 |
+
"frequency_penalty": 0.7,
|
105 |
+
"llm_id": "deepseek-chat@DeepSeek",
|
106 |
+
"maxTokensEnabled": true,
|
107 |
+
"max_tokens": 256,
|
108 |
+
"parameter": "Precise",
|
109 |
+
"presencePenaltyEnabled": true,
|
110 |
+
"presence_penalty": 0.4,
|
111 |
+
"temperature": 0.1,
|
112 |
+
"temperatureEnabled": true,
|
113 |
+
"topPEnabled": true,
|
114 |
+
"top_n": 2,
|
115 |
+
"top_p": 0.3
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"downstream": [
|
119 |
+
"AkShare:CalmHotelsKnow"
|
120 |
+
],
|
121 |
+
"upstream": [
|
122 |
+
"Answer:NeatLandsWave"
|
123 |
+
]
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"graph": {
|
127 |
+
"nodes": [
|
128 |
+
{
|
129 |
+
"data": {
|
130 |
+
"form": {
|
131 |
+
"prologue": "Hi there!"
|
132 |
+
},
|
133 |
+
"label": "Begin",
|
134 |
+
"name": "Opening"
|
135 |
+
},
|
136 |
+
"dragging": false,
|
137 |
+
"height": 44,
|
138 |
+
"id": "begin",
|
139 |
+
"position": {
|
140 |
+
"x": -521.8118264317484,
|
141 |
+
"y": -27.999467037576665
|
142 |
+
},
|
143 |
+
"positionAbsolute": {
|
144 |
+
"x": -521.8118264317484,
|
145 |
+
"y": -27.999467037576665
|
146 |
+
},
|
147 |
+
"selected": false,
|
148 |
+
"sourcePosition": "left",
|
149 |
+
"targetPosition": "right",
|
150 |
+
"type": "beginNode",
|
151 |
+
"width": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"data": {
|
155 |
+
"form": {
|
156 |
+
"query_type": "stock",
|
157 |
+
"top_n": 5
|
158 |
+
},
|
159 |
+
"label": "WenCai",
|
160 |
+
"name": "Wencai"
|
161 |
+
},
|
162 |
+
"dragging": false,
|
163 |
+
"height": 44,
|
164 |
+
"id": "WenCai:TenParksOpen",
|
165 |
+
"position": {
|
166 |
+
"x": -13.030801663267397,
|
167 |
+
"y": -30.557141660610256
|
168 |
+
},
|
169 |
+
"positionAbsolute": {
|
170 |
+
"x": -13.030801663267397,
|
171 |
+
"y": -30.557141660610256
|
172 |
+
},
|
173 |
+
"selected": false,
|
174 |
+
"sourcePosition": "right",
|
175 |
+
"targetPosition": "left",
|
176 |
+
"type": "ragNode",
|
177 |
+
"width": 200
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"form": {
|
182 |
+
"top_n": 10
|
183 |
+
},
|
184 |
+
"label": "AkShare",
|
185 |
+
"name": "AKShare"
|
186 |
+
},
|
187 |
+
"dragging": false,
|
188 |
+
"height": 44,
|
189 |
+
"id": "AkShare:CalmHotelsKnow",
|
190 |
+
"position": {
|
191 |
+
"x": 267.17349571786156,
|
192 |
+
"y": 100.01281266803943
|
193 |
+
},
|
194 |
+
"positionAbsolute": {
|
195 |
+
"x": 267.17349571786156,
|
196 |
+
"y": 100.01281266803943
|
197 |
+
},
|
198 |
+
"selected": false,
|
199 |
+
"sourcePosition": "right",
|
200 |
+
"targetPosition": "left",
|
201 |
+
"type": "ragNode",
|
202 |
+
"width": 200
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"data": {
|
206 |
+
"form": {},
|
207 |
+
"label": "Answer",
|
208 |
+
"name": "Interact"
|
209 |
+
},
|
210 |
+
"dragging": false,
|
211 |
+
"height": 44,
|
212 |
+
"id": "Answer:NeatLandsWave",
|
213 |
+
"position": {
|
214 |
+
"x": -304.0612563145512,
|
215 |
+
"y": -29.054278091837944
|
216 |
+
},
|
217 |
+
"positionAbsolute": {
|
218 |
+
"x": -304.0612563145512,
|
219 |
+
"y": -29.054278091837944
|
220 |
+
},
|
221 |
+
"selected": false,
|
222 |
+
"sourcePosition": "right",
|
223 |
+
"targetPosition": "left",
|
224 |
+
"type": "logicNode",
|
225 |
+
"width": 200
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"data": {
|
229 |
+
"form": {
|
230 |
+
"cite": true,
|
231 |
+
"frequencyPenaltyEnabled": true,
|
232 |
+
"frequency_penalty": 0.7,
|
233 |
+
"llm_id": "deepseek-chat@DeepSeek",
|
234 |
+
"maxTokensEnabled": true,
|
235 |
+
"max_tokens": 256,
|
236 |
+
"message_history_window_size": 0,
|
237 |
+
"parameter": "Precise",
|
238 |
+
"parameters": [
|
239 |
+
{
|
240 |
+
"component_id": "WenCai:TenParksOpen",
|
241 |
+
"id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
|
242 |
+
"key": "wencai_input"
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"component_id": "AkShare:CalmHotelsKnow",
|
246 |
+
"id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
|
247 |
+
"key": "ak_input"
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"presencePenaltyEnabled": true,
|
251 |
+
"presence_penalty": 0.4,
|
252 |
+
"prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
|
253 |
+
"temperature": 0.1,
|
254 |
+
"temperatureEnabled": true,
|
255 |
+
"topPEnabled": true,
|
256 |
+
"top_p": 0.3
|
257 |
+
},
|
258 |
+
"label": "Generate",
|
259 |
+
"name": "LLM"
|
260 |
+
},
|
261 |
+
"dragging": false,
|
262 |
+
"height": 170,
|
263 |
+
"id": "Generate:RottenPianosUnite",
|
264 |
+
"position": {
|
265 |
+
"x": -16.477598988611703,
|
266 |
+
"y": -251.90091743639417
|
267 |
+
},
|
268 |
+
"positionAbsolute": {
|
269 |
+
"x": -16.477598988611703,
|
270 |
+
"y": -251.90091743639417
|
271 |
+
},
|
272 |
+
"selected": false,
|
273 |
+
"sourcePosition": "right",
|
274 |
+
"targetPosition": "left",
|
275 |
+
"type": "generateNode",
|
276 |
+
"width": 200
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"data": {
|
280 |
+
"form": {
|
281 |
+
"frequencyPenaltyEnabled": true,
|
282 |
+
"frequency_penalty": 0.7,
|
283 |
+
"llm_id": "deepseek-chat@DeepSeek",
|
284 |
+
"maxTokensEnabled": true,
|
285 |
+
"max_tokens": 256,
|
286 |
+
"parameter": "Precise",
|
287 |
+
"presencePenaltyEnabled": true,
|
288 |
+
"presence_penalty": 0.4,
|
289 |
+
"temperature": 0.1,
|
290 |
+
"temperatureEnabled": true,
|
291 |
+
"topPEnabled": true,
|
292 |
+
"top_n": 2,
|
293 |
+
"top_p": 0.3
|
294 |
+
},
|
295 |
+
"label": "KeywordExtract",
|
296 |
+
"name": "Keywords"
|
297 |
+
},
|
298 |
+
"dragging": false,
|
299 |
+
"height": 86,
|
300 |
+
"id": "KeywordExtract:BreezyGoatsRead",
|
301 |
+
"position": {
|
302 |
+
"x": -17.690374759999543,
|
303 |
+
"y": 80.39964392387697
|
304 |
+
},
|
305 |
+
"positionAbsolute": {
|
306 |
+
"x": -17.690374759999543,
|
307 |
+
"y": 80.39964392387697
|
308 |
+
},
|
309 |
+
"selected": false,
|
310 |
+
"sourcePosition": "right",
|
311 |
+
"targetPosition": "left",
|
312 |
+
"type": "keywordNode",
|
313 |
+
"width": 200
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"data": {
|
317 |
+
"form": {
|
318 |
+
"text": "Receives the user's financial inquiries and displays the large model's response to financial questions."
|
319 |
+
},
|
320 |
+
"label": "Note",
|
321 |
+
"name": "N: Interact"
|
322 |
+
},
|
323 |
+
"dragging": false,
|
324 |
+
"height": 162,
|
325 |
+
"id": "Note:FuzzyPoetsLearn",
|
326 |
+
"position": {
|
327 |
+
"x": -296.5982116419186,
|
328 |
+
"y": 38.77567426067935
|
329 |
+
},
|
330 |
+
"positionAbsolute": {
|
331 |
+
"x": -296.5982116419186,
|
332 |
+
"y": 38.77567426067935
|
333 |
+
},
|
334 |
+
"resizing": false,
|
335 |
+
"selected": false,
|
336 |
+
"sourcePosition": "right",
|
337 |
+
"style": {
|
338 |
+
"height": 162,
|
339 |
+
"width": 214
|
340 |
+
},
|
341 |
+
"targetPosition": "left",
|
342 |
+
"type": "noteNode",
|
343 |
+
"width": 214,
|
344 |
+
"dragHandle": ".note-drag-handle"
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"data": {
|
348 |
+
"form": {
|
349 |
+
"text": "Extracts keywords based on the user's financial questions for better retrieval."
|
350 |
+
},
|
351 |
+
"label": "Note",
|
352 |
+
"name": "N: Keywords"
|
353 |
+
},
|
354 |
+
"dragging": false,
|
355 |
+
"height": 155,
|
356 |
+
"id": "Note:FlatBagsRun",
|
357 |
+
"position": {
|
358 |
+
"x": -14.82895160277127,
|
359 |
+
"y": 186.52508153680787
|
360 |
+
},
|
361 |
+
"positionAbsolute": {
|
362 |
+
"x": -14.82895160277127,
|
363 |
+
"y": 186.52508153680787
|
364 |
+
},
|
365 |
+
"resizing": false,
|
366 |
+
"selected": false,
|
367 |
+
"sourcePosition": "right",
|
368 |
+
"style": {
|
369 |
+
"height": 155,
|
370 |
+
"width": 213
|
371 |
+
},
|
372 |
+
"targetPosition": "left",
|
373 |
+
"type": "noteNode",
|
374 |
+
"width": 213,
|
375 |
+
"dragHandle": ".note-drag-handle"
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"data": {
|
379 |
+
"form": {
|
380 |
+
"text": "Searches on akshare for the latest news about economics based on the keywords and returns the results."
|
381 |
+
},
|
382 |
+
"label": "Note",
|
383 |
+
"name": "N: AKShare"
|
384 |
+
},
|
385 |
+
"dragging": false,
|
386 |
+
"height": 128,
|
387 |
+
"id": "Note:WarmClothsSort",
|
388 |
+
"position": {
|
389 |
+
"x": 573.7653319987893,
|
390 |
+
"y": 102.64512355369035
|
391 |
+
},
|
392 |
+
"positionAbsolute": {
|
393 |
+
"x": 573.7653319987893,
|
394 |
+
"y": 102.64512355369035
|
395 |
+
},
|
396 |
+
"resizing": false,
|
397 |
+
"selected": false,
|
398 |
+
"sourcePosition": "right",
|
399 |
+
"style": {
|
400 |
+
"height": 128,
|
401 |
+
"width": 283
|
402 |
+
},
|
403 |
+
"targetPosition": "left",
|
404 |
+
"type": "noteNode",
|
405 |
+
"width": 283,
|
406 |
+
"dragHandle": ".note-drag-handle"
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"data": {
|
410 |
+
"form": {
|
411 |
+
"text": "Searches by Wencai to select stocks that satisfy user mentioned conditions."
|
412 |
+
},
|
413 |
+
"label": "Note",
|
414 |
+
"name": "N: Wencai"
|
415 |
+
},
|
416 |
+
"dragging": false,
|
417 |
+
"height": 128,
|
418 |
+
"id": "Note:TiredReadersWash",
|
419 |
+
"position": {
|
420 |
+
"x": 571.4274792499875,
|
421 |
+
"y": -37.07105560150117
|
422 |
+
},
|
423 |
+
"positionAbsolute": {
|
424 |
+
"x": 571.4274792499875,
|
425 |
+
"y": -37.07105560150117
|
426 |
+
},
|
427 |
+
"resizing": false,
|
428 |
+
"selected": false,
|
429 |
+
"sourcePosition": "right",
|
430 |
+
"style": {
|
431 |
+
"height": 128,
|
432 |
+
"width": 285
|
433 |
+
},
|
434 |
+
"targetPosition": "left",
|
435 |
+
"type": "noteNode",
|
436 |
+
"width": 285,
|
437 |
+
"dragHandle": ".note-drag-handle"
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"data": {
|
441 |
+
"form": {
|
442 |
+
"text": "The large model answers the user's medical health questions based on the searched and retrieved content."
|
443 |
+
},
|
444 |
+
"label": "Note",
|
445 |
+
"name": "N: LLM"
|
446 |
+
},
|
447 |
+
"dragging": false,
|
448 |
+
"height": 163,
|
449 |
+
"id": "Note:TameBoatsType",
|
450 |
+
"position": {
|
451 |
+
"x": -7.849538042569293,
|
452 |
+
"y": -427.90526378748035
|
453 |
+
},
|
454 |
+
"positionAbsolute": {
|
455 |
+
"x": -7.849538042569293,
|
456 |
+
"y": -427.90526378748035
|
457 |
+
},
|
458 |
+
"resizing": false,
|
459 |
+
"selected": false,
|
460 |
+
"sourcePosition": "right",
|
461 |
+
"style": {
|
462 |
+
"height": 163,
|
463 |
+
"width": 212
|
464 |
+
},
|
465 |
+
"targetPosition": "left",
|
466 |
+
"type": "noteNode",
|
467 |
+
"width": 212,
|
468 |
+
"dragHandle": ".note-drag-handle"
|
469 |
+
}
|
470 |
+
],
|
471 |
+
"edges": [
|
472 |
+
{
|
473 |
+
"id": "reactflow__edge-begin-Answer:NeatLandsWavec",
|
474 |
+
"markerEnd": "logo",
|
475 |
+
"source": "begin",
|
476 |
+
"sourceHandle": null,
|
477 |
+
"style": {
|
478 |
+
"stroke": "rgb(202 197 245)",
|
479 |
+
"strokeWidth": 2
|
480 |
+
},
|
481 |
+
"target": "Answer:NeatLandsWave",
|
482 |
+
"targetHandle": "c",
|
483 |
+
"type": "buttonEdge"
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"id": "reactflow__edge-Answer:NeatLandsWaveb-WenCai:TenParksOpenc",
|
487 |
+
"markerEnd": "logo",
|
488 |
+
"source": "Answer:NeatLandsWave",
|
489 |
+
"sourceHandle": "b",
|
490 |
+
"style": {
|
491 |
+
"stroke": "rgb(202 197 245)",
|
492 |
+
"strokeWidth": 2
|
493 |
+
},
|
494 |
+
"target": "WenCai:TenParksOpen",
|
495 |
+
"targetHandle": "c",
|
496 |
+
"type": "buttonEdge"
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"id": "reactflow__edge-KeywordExtract:BreezyGoatsReadb-AkShare:CalmHotelsKnowc",
|
500 |
+
"markerEnd": "logo",
|
501 |
+
"source": "KeywordExtract:BreezyGoatsRead",
|
502 |
+
"sourceHandle": "b",
|
503 |
+
"style": {
|
504 |
+
"stroke": "rgb(202 197 245)",
|
505 |
+
"strokeWidth": 2
|
506 |
+
},
|
507 |
+
"target": "AkShare:CalmHotelsKnow",
|
508 |
+
"targetHandle": "c",
|
509 |
+
"type": "buttonEdge"
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"id": "reactflow__edge-WenCai:TenParksOpenb-Generate:RottenPianosUniteb",
|
513 |
+
"markerEnd": "logo",
|
514 |
+
"source": "WenCai:TenParksOpen",
|
515 |
+
"sourceHandle": "b",
|
516 |
+
"style": {
|
517 |
+
"stroke": "rgb(202 197 245)",
|
518 |
+
"strokeWidth": 2
|
519 |
+
},
|
520 |
+
"target": "Generate:RottenPianosUnite",
|
521 |
+
"targetHandle": "b",
|
522 |
+
"type": "buttonEdge"
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"id": "reactflow__edge-AkShare:CalmHotelsKnowb-Generate:RottenPianosUniteb",
|
526 |
+
"markerEnd": "logo",
|
527 |
+
"source": "AkShare:CalmHotelsKnow",
|
528 |
+
"sourceHandle": "b",
|
529 |
+
"style": {
|
530 |
+
"stroke": "rgb(202 197 245)",
|
531 |
+
"strokeWidth": 2
|
532 |
+
},
|
533 |
+
"target": "Generate:RottenPianosUnite",
|
534 |
+
"targetHandle": "b",
|
535 |
+
"type": "buttonEdge"
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"id": "reactflow__edge-Generate:RottenPianosUnitec-Answer:NeatLandsWavec",
|
539 |
+
"markerEnd": "logo",
|
540 |
+
"source": "Generate:RottenPianosUnite",
|
541 |
+
"sourceHandle": "c",
|
542 |
+
"style": {
|
543 |
+
"stroke": "rgb(202 197 245)",
|
544 |
+
"strokeWidth": 2
|
545 |
+
},
|
546 |
+
"target": "Answer:NeatLandsWave",
|
547 |
+
"targetHandle": "c",
|
548 |
+
"type": "buttonEdge"
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"id": "reactflow__edge-Answer:NeatLandsWaveb-KeywordExtract:BreezyGoatsReadc",
|
552 |
+
"markerEnd": "logo",
|
553 |
+
"source": "Answer:NeatLandsWave",
|
554 |
+
"sourceHandle": "b",
|
555 |
+
"style": {
|
556 |
+
"stroke": "rgb(202 197 245)",
|
557 |
+
"strokeWidth": 2
|
558 |
+
},
|
559 |
+
"target": "KeywordExtract:BreezyGoatsRead",
|
560 |
+
"targetHandle": "c",
|
561 |
+
"type": "buttonEdge"
|
562 |
+
}
|
563 |
+
]
|
564 |
+
},
|
565 |
+
"history": [],
|
566 |
+
"messages": [],
|
567 |
+
"path": [],
|
568 |
+
"reference": []
|
569 |
+
},
|
570 |
+
"avatar": ""
|
571 |
+
}
|
agent/templates/text2sql.json
CHANGED
@@ -1,585 +1,585 @@
|
|
1 |
-
{
|
2 |
-
"id": 5,
|
3 |
-
"title": "Text To SQL",
|
4 |
-
"description": "An agent that converts user queries into SQL statements. You must prepare three knowledge bases: 1: DDL for your database; 2: Examples of user queries converted to SQL statements; 3: A comprehensive description of your database, including but not limited to tables and records.",
|
5 |
-
"canvas_type": "chatbot",
|
6 |
-
"dsl": {
|
7 |
-
"answer": [],
|
8 |
-
"components": {
|
9 |
-
"begin": {
|
10 |
-
"obj": {
|
11 |
-
"component_name": "Begin",
|
12 |
-
"params": {}
|
13 |
-
},
|
14 |
-
"downstream": [
|
15 |
-
"Answer:SocialAdsWonder"
|
16 |
-
],
|
17 |
-
"upstream": []
|
18 |
-
},
|
19 |
-
"Answer:SocialAdsWonder": {
|
20 |
-
"obj": {
|
21 |
-
"component_name": "Answer",
|
22 |
-
"params": {}
|
23 |
-
},
|
24 |
-
"downstream": [
|
25 |
-
"Retrieval:TrueCornersJam",
|
26 |
-
"Retrieval:EasyDryersShop",
|
27 |
-
"Retrieval:LazyChefsWatch"
|
28 |
-
],
|
29 |
-
"upstream": [
|
30 |
-
"begin",
|
31 |
-
"Generate:RareSymbolsGrin"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
"Retrieval:TrueCornersJam": {
|
35 |
-
"obj": {
|
36 |
-
"component_name": "Retrieval",
|
37 |
-
"params": {
|
38 |
-
"empty_response": "Nothing found in DDL!",
|
39 |
-
"kb_ids": [],
|
40 |
-
"keywords_similarity_weight": 0.3,
|
41 |
-
"similarity_threshold": 0.02,
|
42 |
-
"top_n": 8
|
43 |
-
}
|
44 |
-
},
|
45 |
-
"downstream": [
|
46 |
-
"Generate:RareSymbolsGrin"
|
47 |
-
],
|
48 |
-
"upstream": [
|
49 |
-
"Answer:SocialAdsWonder"
|
50 |
-
]
|
51 |
-
},
|
52 |
-
"Retrieval:EasyDryersShop": {
|
53 |
-
"obj": {
|
54 |
-
"component_name": "Retrieval",
|
55 |
-
"params": {
|
56 |
-
"empty_response": "Nothing found in Q-SQL!",
|
57 |
-
"kb_ids": [],
|
58 |
-
"keywords_similarity_weight": 0.3,
|
59 |
-
"similarity_threshold": 0.2,
|
60 |
-
"top_n": 8
|
61 |
-
}
|
62 |
-
},
|
63 |
-
"downstream": [
|
64 |
-
"Generate:RareSymbolsGrin"
|
65 |
-
],
|
66 |
-
"upstream": [
|
67 |
-
"Answer:SocialAdsWonder"
|
68 |
-
]
|
69 |
-
},
|
70 |
-
"Retrieval:LazyChefsWatch": {
|
71 |
-
"obj": {
|
72 |
-
"component_name": "Retrieval",
|
73 |
-
"params": {
|
74 |
-
"empty_response": "Nothing found in DB-Description!",
|
75 |
-
"kb_ids": [],
|
76 |
-
"keywords_similarity_weight": 0.3,
|
77 |
-
"similarity_threshold": 0.2,
|
78 |
-
"top_n": 8
|
79 |
-
}
|
80 |
-
},
|
81 |
-
"downstream": [
|
82 |
-
"Generate:RareSymbolsGrin"
|
83 |
-
],
|
84 |
-
"upstream": [
|
85 |
-
"Answer:SocialAdsWonder"
|
86 |
-
]
|
87 |
-
},
|
88 |
-
"Generate:RareSymbolsGrin": {
|
89 |
-
"obj": {
|
90 |
-
"component_name": "Generate",
|
91 |
-
"params": {
|
92 |
-
"cite": true,
|
93 |
-
"frequency_penalty": 0.7,
|
94 |
-
"llm_id": "deepseek-chat@DeepSeek",
|
95 |
-
"max_tokens": 256,
|
96 |
-
"message_history_window_size": 12,
|
97 |
-
"parameters": [
|
98 |
-
{
|
99 |
-
"component_id": "Retrieval:TrueCornersJam",
|
100 |
-
"id": "78644673-9236-4605-8110-59705fc38784",
|
101 |
-
"key": "ddl_input"
|
102 |
-
},
|
103 |
-
{
|
104 |
-
"component_id": "Retrieval:LazyChefsWatch",
|
105 |
-
"id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
|
106 |
-
"key": "db_input"
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"component_id": "Retrieval:EasyDryersShop",
|
110 |
-
"id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
|
111 |
-
"key": "sql_input"
|
112 |
-
}
|
113 |
-
],
|
114 |
-
"presence_penalty": 0.4,
|
115 |
-
"prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
|
116 |
-
"temperature": 0.1,
|
117 |
-
"top_p": 0.3
|
118 |
-
}
|
119 |
-
},
|
120 |
-
"downstream": [
|
121 |
-
"Answer:SocialAdsWonder"
|
122 |
-
],
|
123 |
-
"upstream": [
|
124 |
-
"Retrieval:TrueCornersJam",
|
125 |
-
"Retrieval:EasyDryersShop",
|
126 |
-
"Retrieval:LazyChefsWatch"
|
127 |
-
]
|
128 |
-
}
|
129 |
-
},
|
130 |
-
"embed_id": "",
|
131 |
-
"graph": {
|
132 |
-
"nodes": [
|
133 |
-
{
|
134 |
-
"data": {
|
135 |
-
"label": "Begin",
|
136 |
-
"name": "begin"
|
137 |
-
},
|
138 |
-
"dragging": false,
|
139 |
-
"height": 44,
|
140 |
-
"id": "begin",
|
141 |
-
"position": {
|
142 |
-
"x": -520.486587527275,
|
143 |
-
"y": 117.87988995940702
|
144 |
-
},
|
145 |
-
"positionAbsolute": {
|
146 |
-
"x": -520.486587527275,
|
147 |
-
"y": 117.87988995940702
|
148 |
-
},
|
149 |
-
"selected": false,
|
150 |
-
"sourcePosition": "left",
|
151 |
-
"targetPosition": "right",
|
152 |
-
"type": "beginNode",
|
153 |
-
"width": 100
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"data": {
|
157 |
-
"form": {},
|
158 |
-
"label": "Answer",
|
159 |
-
"name": "interface"
|
160 |
-
},
|
161 |
-
"dragging": false,
|
162 |
-
"height": 44,
|
163 |
-
"id": "Answer:SocialAdsWonder",
|
164 |
-
"position": {
|
165 |
-
"x": -284.9289105495367,
|
166 |
-
"y": 119.9282206409824
|
167 |
-
},
|
168 |
-
"positionAbsolute": {
|
169 |
-
"x": -284.9289105495367,
|
170 |
-
"y": 119.9282206409824
|
171 |
-
},
|
172 |
-
"selected": false,
|
173 |
-
"sourcePosition": "right",
|
174 |
-
"targetPosition": "left",
|
175 |
-
"type": "logicNode",
|
176 |
-
"width": 200
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"data": {
|
180 |
-
"form": {
|
181 |
-
"empty_response": "Nothing found in DDL!",
|
182 |
-
"kb_ids": [],
|
183 |
-
"keywords_similarity_weight": 0.3,
|
184 |
-
"similarity_threshold": 0.02,
|
185 |
-
"top_n": 8
|
186 |
-
},
|
187 |
-
"label": "Retrieval",
|
188 |
-
"name": "DDL"
|
189 |
-
},
|
190 |
-
"dragging": false,
|
191 |
-
"height": 44,
|
192 |
-
"id": "Retrieval:TrueCornersJam",
|
193 |
-
"position": {
|
194 |
-
"x": 119.61927071085717,
|
195 |
-
"y": -40.184181873335746
|
196 |
-
},
|
197 |
-
"positionAbsolute": {
|
198 |
-
"x": 119.61927071085717,
|
199 |
-
"y": -40.184181873335746
|
200 |
-
},
|
201 |
-
"selected": false,
|
202 |
-
"sourcePosition": "right",
|
203 |
-
"targetPosition": "left",
|
204 |
-
"type": "retrievalNode",
|
205 |
-
"width": 200
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"data": {
|
209 |
-
"form": {
|
210 |
-
"empty_response": "Nothing found in Q-SQL!",
|
211 |
-
"kb_ids": [],
|
212 |
-
"keywords_similarity_weight": 0.3,
|
213 |
-
"similarity_threshold": 0.2,
|
214 |
-
"top_n": 8
|
215 |
-
},
|
216 |
-
"label": "Retrieval",
|
217 |
-
"name": "Q->SQL"
|
218 |
-
},
|
219 |
-
"dragging": false,
|
220 |
-
"height": 44,
|
221 |
-
"id": "Retrieval:EasyDryersShop",
|
222 |
-
"position": {
|
223 |
-
"x": 81.2024576603057,
|
224 |
-
"y": 94.16303322180948
|
225 |
-
},
|
226 |
-
"positionAbsolute": {
|
227 |
-
"x": 81.2024576603057,
|
228 |
-
"y": 94.16303322180948
|
229 |
-
},
|
230 |
-
"selected": false,
|
231 |
-
"sourcePosition": "right",
|
232 |
-
"targetPosition": "left",
|
233 |
-
"type": "retrievalNode",
|
234 |
-
"width": 200
|
235 |
-
},
|
236 |
-
{
|
237 |
-
"data": {
|
238 |
-
"form": {
|
239 |
-
"empty_response": "Nothing found in DB-Description!",
|
240 |
-
"kb_ids": [],
|
241 |
-
"keywords_similarity_weight": 0.3,
|
242 |
-
"similarity_threshold": 0.2,
|
243 |
-
"top_n": 8
|
244 |
-
},
|
245 |
-
"label": "Retrieval",
|
246 |
-
"name": "DB Description"
|
247 |
-
},
|
248 |
-
"dragging": false,
|
249 |
-
"height": 44,
|
250 |
-
"id": "Retrieval:LazyChefsWatch",
|
251 |
-
"position": {
|
252 |
-
"x": 51.228157704293324,
|
253 |
-
"y": 252.77721891325103
|
254 |
-
},
|
255 |
-
"positionAbsolute": {
|
256 |
-
"x": 51.228157704293324,
|
257 |
-
"y": 252.77721891325103
|
258 |
-
},
|
259 |
-
"selected": false,
|
260 |
-
"sourcePosition": "right",
|
261 |
-
"targetPosition": "left",
|
262 |
-
"type": "retrievalNode",
|
263 |
-
"width": 200
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"data": {
|
267 |
-
"form": {
|
268 |
-
"cite": true,
|
269 |
-
"frequencyPenaltyEnabled": true,
|
270 |
-
"frequency_penalty": 0.7,
|
271 |
-
"llm_id": "deepseek-chat@DeepSeek",
|
272 |
-
"maxTokensEnabled": true,
|
273 |
-
"max_tokens": 256,
|
274 |
-
"message_history_window_size": 12,
|
275 |
-
"parameter": "Precise",
|
276 |
-
"parameters": [
|
277 |
-
{
|
278 |
-
"component_id": "Retrieval:TrueCornersJam",
|
279 |
-
"id": "78644673-9236-4605-8110-59705fc38784",
|
280 |
-
"key": "ddl_input"
|
281 |
-
},
|
282 |
-
{
|
283 |
-
"component_id": "Retrieval:LazyChefsWatch",
|
284 |
-
"id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
|
285 |
-
"key": "db_input"
|
286 |
-
},
|
287 |
-
{
|
288 |
-
"component_id": "Retrieval:EasyDryersShop",
|
289 |
-
"id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
|
290 |
-
"key": "sql_input"
|
291 |
-
}
|
292 |
-
],
|
293 |
-
"presencePenaltyEnabled": true,
|
294 |
-
"presence_penalty": 0.4,
|
295 |
-
"prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
|
296 |
-
"temperature": 0.1,
|
297 |
-
"temperatureEnabled": true,
|
298 |
-
"topPEnabled": true,
|
299 |
-
"top_p": 0.3
|
300 |
-
},
|
301 |
-
"label": "Generate",
|
302 |
-
"name": "LLM"
|
303 |
-
},
|
304 |
-
"dragging": false,
|
305 |
-
"height": 212,
|
306 |
-
"id": "Generate:RareSymbolsGrin",
|
307 |
-
"position": {
|
308 |
-
"x": 6.6098512156750076,
|
309 |
-
"y": 405.0105548561454
|
310 |
-
},
|
311 |
-
"positionAbsolute": {
|
312 |
-
"x": 6.6098512156750076,
|
313 |
-
"y": 405.0105548561454
|
314 |
-
},
|
315 |
-
"selected": false,
|
316 |
-
"sourcePosition": "right",
|
317 |
-
"targetPosition": "left",
|
318 |
-
"type": "generateNode",
|
319 |
-
"width": 200
|
320 |
-
},
|
321 |
-
{
|
322 |
-
"data": {
|
323 |
-
"form": {
|
324 |
-
"text": "Receives a sentence that the user wants to convert into SQL and displays the result of the large model's SQL conversion."
|
325 |
-
},
|
326 |
-
"label": "Note",
|
327 |
-
"name": "N: Interface"
|
328 |
-
},
|
329 |
-
"dragging": false,
|
330 |
-
"height": 132,
|
331 |
-
"id": "Note:GentleRabbitsWonder",
|
332 |
-
"position": {
|
333 |
-
"x": -287.3066094433631,
|
334 |
-
"y": -30.808189185380513
|
335 |
-
},
|
336 |
-
"positionAbsolute": {
|
337 |
-
"x": -287.3066094433631,
|
338 |
-
"y": -30.808189185380513
|
339 |
-
},
|
340 |
-
"resizing": false,
|
341 |
-
"selected": false,
|
342 |
-
"sourcePosition": "right",
|
343 |
-
"style": {
|
344 |
-
"height": 132,
|
345 |
-
"width": 324
|
346 |
-
},
|
347 |
-
"targetPosition": "left",
|
348 |
-
"type": "noteNode",
|
349 |
-
"width": 324,
|
350 |
-
"dragHandle": ".note-drag-handle"
|
351 |
-
},
|
352 |
-
{
|
353 |
-
"data": {
|
354 |
-
"form": {
|
355 |
-
"text": "The large model learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
|
356 |
-
},
|
357 |
-
"label": "Note",
|
358 |
-
"name": "N: LLM"
|
359 |
-
},
|
360 |
-
"dragging": false,
|
361 |
-
"height": 147,
|
362 |
-
"id": "Note:SixCitiesJoke",
|
363 |
-
"position": {
|
364 |
-
"x": 5.12121582244032,
|
365 |
-
"y": 637.6539219843564
|
366 |
-
},
|
367 |
-
"positionAbsolute": {
|
368 |
-
"x": 5.12121582244032,
|
369 |
-
"y": 637.6539219843564
|
370 |
-
},
|
371 |
-
"resizing": false,
|
372 |
-
"selected": false,
|
373 |
-
"sourcePosition": "right",
|
374 |
-
"style": {
|
375 |
-
"height": 147,
|
376 |
-
"width": 326
|
377 |
-
},
|
378 |
-
"targetPosition": "left",
|
379 |
-
"type": "noteNode",
|
380 |
-
"width": 326,
|
381 |
-
"dragHandle": ".note-drag-handle"
|
382 |
-
},
|
383 |
-
{
|
384 |
-
"data": {
|
385 |
-
"form": {
|
386 |
-
"text": "Searches for description about meanings of tables and fields."
|
387 |
-
},
|
388 |
-
"label": "Note",
|
389 |
-
"name": "N: DB description"
|
390 |
-
},
|
391 |
-
"dragging": false,
|
392 |
-
"height": 128,
|
393 |
-
"id": "Note:FamousCarpetsTaste",
|
394 |
-
"position": {
|
395 |
-
"x": 399.9267065852242,
|
396 |
-
"y": 250.0329701879931
|
397 |
-
},
|
398 |
-
"positionAbsolute": {
|
399 |
-
"x": 399.9267065852242,
|
400 |
-
"y": 250.0329701879931
|
401 |
-
},
|
402 |
-
"selected": false,
|
403 |
-
"sourcePosition": "right",
|
404 |
-
"targetPosition": "left",
|
405 |
-
"type": "noteNode",
|
406 |
-
"width": 269,
|
407 |
-
"dragHandle": ".note-drag-handle"
|
408 |
-
},
|
409 |
-
{
|
410 |
-
"data": {
|
411 |
-
"form": {
|
412 |
-
"text": "Searches for samples about question to SQL.\nPlease check this dataset: https://huggingface.co/datasets/InfiniFlow/text2sql"
|
413 |
-
},
|
414 |
-
"label": "Note",
|
415 |
-
"name": "N: Q->SQL"
|
416 |
-
},
|
417 |
-
"dragging": false,
|
418 |
-
"height": 130,
|
419 |
-
"id": "Note:PoliteBeesArrive",
|
420 |
-
"position": {
|
421 |
-
"x": 489.0393427986917,
|
422 |
-
"y": 96.58232093146341
|
423 |
-
},
|
424 |
-
"positionAbsolute": {
|
425 |
-
"x": 489.0393427986917,
|
426 |
-
"y": 96.58232093146341
|
427 |
-
},
|
428 |
-
"resizing": false,
|
429 |
-
"selected": false,
|
430 |
-
"sourcePosition": "right",
|
431 |
-
"style": {
|
432 |
-
"height": 130,
|
433 |
-
"width": 451
|
434 |
-
},
|
435 |
-
"targetPosition": "left",
|
436 |
-
"type": "noteNode",
|
437 |
-
"width": 451,
|
438 |
-
"dragHandle": ".note-drag-handle"
|
439 |
-
},
|
440 |
-
{
|
441 |
-
"data": {
|
442 |
-
"form": {
|
443 |
-
"text": "DDL(Data Definition Language).\n\nSearches for relevant database creation statements.\n\nIt should bind with a KB to which DDL is dumped in.\nYou could use 'General' as parsing method and ';' as delimiter."
|
444 |
-
},
|
445 |
-
"label": "Note",
|
446 |
-
"name": "N: DDL"
|
447 |
-
},
|
448 |
-
"dragging": false,
|
449 |
-
"height": 258,
|
450 |
-
"id": "Note:SmartWingsDouble",
|
451 |
-
"position": {
|
452 |
-
"x": 404.1930553966363,
|
453 |
-
"y": -208.84980249039137
|
454 |
-
},
|
455 |
-
"positionAbsolute": {
|
456 |
-
"x": 404.1930553966363,
|
457 |
-
"y": -208.84980249039137
|
458 |
-
},
|
459 |
-
"resizing": false,
|
460 |
-
"selected": false,
|
461 |
-
"sourcePosition": "right",
|
462 |
-
"style": {
|
463 |
-
"height": 258,
|
464 |
-
"width": 283
|
465 |
-
},
|
466 |
-
"targetPosition": "left",
|
467 |
-
"type": "noteNode",
|
468 |
-
"width": 283,
|
469 |
-
"dragHandle": ".note-drag-handle"
|
470 |
-
}
|
471 |
-
],
|
472 |
-
"edges": [
|
473 |
-
{
|
474 |
-
"id": "reactflow__edge-begin-Answer:SocialAdsWonderc",
|
475 |
-
"markerEnd": "logo",
|
476 |
-
"source": "begin",
|
477 |
-
"sourceHandle": null,
|
478 |
-
"style": {
|
479 |
-
"stroke": "rgb(202 197 245)",
|
480 |
-
"strokeWidth": 2
|
481 |
-
},
|
482 |
-
"target": "Answer:SocialAdsWonder",
|
483 |
-
"targetHandle": "c",
|
484 |
-
"type": "buttonEdge"
|
485 |
-
},
|
486 |
-
{
|
487 |
-
"id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:TrueCornersJamc",
|
488 |
-
"markerEnd": "logo",
|
489 |
-
"source": "Answer:SocialAdsWonder",
|
490 |
-
"sourceHandle": "b",
|
491 |
-
"style": {
|
492 |
-
"stroke": "rgb(202 197 245)",
|
493 |
-
"strokeWidth": 2
|
494 |
-
},
|
495 |
-
"target": "Retrieval:TrueCornersJam",
|
496 |
-
"targetHandle": "c",
|
497 |
-
"type": "buttonEdge"
|
498 |
-
},
|
499 |
-
{
|
500 |
-
"id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:EasyDryersShopc",
|
501 |
-
"markerEnd": "logo",
|
502 |
-
"source": "Answer:SocialAdsWonder",
|
503 |
-
"sourceHandle": "b",
|
504 |
-
"style": {
|
505 |
-
"stroke": "rgb(202 197 245)",
|
506 |
-
"strokeWidth": 2
|
507 |
-
},
|
508 |
-
"target": "Retrieval:EasyDryersShop",
|
509 |
-
"targetHandle": "c",
|
510 |
-
"type": "buttonEdge"
|
511 |
-
},
|
512 |
-
{
|
513 |
-
"id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:LazyChefsWatchc",
|
514 |
-
"markerEnd": "logo",
|
515 |
-
"source": "Answer:SocialAdsWonder",
|
516 |
-
"sourceHandle": "b",
|
517 |
-
"style": {
|
518 |
-
"stroke": "rgb(202 197 245)",
|
519 |
-
"strokeWidth": 2
|
520 |
-
},
|
521 |
-
"target": "Retrieval:LazyChefsWatch",
|
522 |
-
"targetHandle": "c",
|
523 |
-
"type": "buttonEdge"
|
524 |
-
},
|
525 |
-
{
|
526 |
-
"id": "reactflow__edge-Retrieval:TrueCornersJamb-Generate:RareSymbolsGrinb",
|
527 |
-
"markerEnd": "logo",
|
528 |
-
"source": "Retrieval:TrueCornersJam",
|
529 |
-
"sourceHandle": "b",
|
530 |
-
"style": {
|
531 |
-
"stroke": "rgb(202 197 245)",
|
532 |
-
"strokeWidth": 2
|
533 |
-
},
|
534 |
-
"target": "Generate:RareSymbolsGrin",
|
535 |
-
"targetHandle": "b",
|
536 |
-
"type": "buttonEdge"
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"id": "reactflow__edge-Retrieval:EasyDryersShopb-Generate:RareSymbolsGrinb",
|
540 |
-
"markerEnd": "logo",
|
541 |
-
"source": "Retrieval:EasyDryersShop",
|
542 |
-
"sourceHandle": "b",
|
543 |
-
"style": {
|
544 |
-
"stroke": "rgb(202 197 245)",
|
545 |
-
"strokeWidth": 2
|
546 |
-
},
|
547 |
-
"target": "Generate:RareSymbolsGrin",
|
548 |
-
"targetHandle": "b",
|
549 |
-
"type": "buttonEdge"
|
550 |
-
},
|
551 |
-
{
|
552 |
-
"id": "reactflow__edge-Retrieval:LazyChefsWatchb-Generate:RareSymbolsGrinb",
|
553 |
-
"markerEnd": "logo",
|
554 |
-
"source": "Retrieval:LazyChefsWatch",
|
555 |
-
"sourceHandle": "b",
|
556 |
-
"style": {
|
557 |
-
"stroke": "rgb(202 197 245)",
|
558 |
-
"strokeWidth": 2
|
559 |
-
},
|
560 |
-
"target": "Generate:RareSymbolsGrin",
|
561 |
-
"targetHandle": "b",
|
562 |
-
"type": "buttonEdge"
|
563 |
-
},
|
564 |
-
{
|
565 |
-
"id": "reactflow__edge-Generate:RareSymbolsGrinc-Answer:SocialAdsWonderc",
|
566 |
-
"markerEnd": "logo",
|
567 |
-
"source": "Generate:RareSymbolsGrin",
|
568 |
-
"sourceHandle": "c",
|
569 |
-
"style": {
|
570 |
-
"stroke": "rgb(202 197 245)",
|
571 |
-
"strokeWidth": 2
|
572 |
-
},
|
573 |
-
"target": "Answer:SocialAdsWonder",
|
574 |
-
"targetHandle": "c",
|
575 |
-
"type": "buttonEdge"
|
576 |
-
}
|
577 |
-
]
|
578 |
-
},
|
579 |
-
"history": [],
|
580 |
-
"messages": [],
|
581 |
-
"path": [],
|
582 |
-
"reference": []
|
583 |
-
},
|
584 |
-
"avatar": ""
|
585 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"id": 5,
|
3 |
+
"title": "Text To SQL",
|
4 |
+
"description": "An agent that converts user queries into SQL statements. You must prepare three knowledge bases: 1: DDL for your database; 2: Examples of user queries converted to SQL statements; 3: A comprehensive description of your database, including but not limited to tables and records.",
|
5 |
+
"canvas_type": "chatbot",
|
6 |
+
"dsl": {
|
7 |
+
"answer": [],
|
8 |
+
"components": {
|
9 |
+
"begin": {
|
10 |
+
"obj": {
|
11 |
+
"component_name": "Begin",
|
12 |
+
"params": {}
|
13 |
+
},
|
14 |
+
"downstream": [
|
15 |
+
"Answer:SocialAdsWonder"
|
16 |
+
],
|
17 |
+
"upstream": []
|
18 |
+
},
|
19 |
+
"Answer:SocialAdsWonder": {
|
20 |
+
"obj": {
|
21 |
+
"component_name": "Answer",
|
22 |
+
"params": {}
|
23 |
+
},
|
24 |
+
"downstream": [
|
25 |
+
"Retrieval:TrueCornersJam",
|
26 |
+
"Retrieval:EasyDryersShop",
|
27 |
+
"Retrieval:LazyChefsWatch"
|
28 |
+
],
|
29 |
+
"upstream": [
|
30 |
+
"begin",
|
31 |
+
"Generate:RareSymbolsGrin"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"Retrieval:TrueCornersJam": {
|
35 |
+
"obj": {
|
36 |
+
"component_name": "Retrieval",
|
37 |
+
"params": {
|
38 |
+
"empty_response": "Nothing found in DDL!",
|
39 |
+
"kb_ids": [],
|
40 |
+
"keywords_similarity_weight": 0.3,
|
41 |
+
"similarity_threshold": 0.02,
|
42 |
+
"top_n": 8
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"downstream": [
|
46 |
+
"Generate:RareSymbolsGrin"
|
47 |
+
],
|
48 |
+
"upstream": [
|
49 |
+
"Answer:SocialAdsWonder"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
"Retrieval:EasyDryersShop": {
|
53 |
+
"obj": {
|
54 |
+
"component_name": "Retrieval",
|
55 |
+
"params": {
|
56 |
+
"empty_response": "Nothing found in Q-SQL!",
|
57 |
+
"kb_ids": [],
|
58 |
+
"keywords_similarity_weight": 0.3,
|
59 |
+
"similarity_threshold": 0.2,
|
60 |
+
"top_n": 8
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"downstream": [
|
64 |
+
"Generate:RareSymbolsGrin"
|
65 |
+
],
|
66 |
+
"upstream": [
|
67 |
+
"Answer:SocialAdsWonder"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"Retrieval:LazyChefsWatch": {
|
71 |
+
"obj": {
|
72 |
+
"component_name": "Retrieval",
|
73 |
+
"params": {
|
74 |
+
"empty_response": "Nothing found in DB-Description!",
|
75 |
+
"kb_ids": [],
|
76 |
+
"keywords_similarity_weight": 0.3,
|
77 |
+
"similarity_threshold": 0.2,
|
78 |
+
"top_n": 8
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"downstream": [
|
82 |
+
"Generate:RareSymbolsGrin"
|
83 |
+
],
|
84 |
+
"upstream": [
|
85 |
+
"Answer:SocialAdsWonder"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"Generate:RareSymbolsGrin": {
|
89 |
+
"obj": {
|
90 |
+
"component_name": "Generate",
|
91 |
+
"params": {
|
92 |
+
"cite": true,
|
93 |
+
"frequency_penalty": 0.7,
|
94 |
+
"llm_id": "deepseek-chat@DeepSeek",
|
95 |
+
"max_tokens": 256,
|
96 |
+
"message_history_window_size": 12,
|
97 |
+
"parameters": [
|
98 |
+
{
|
99 |
+
"component_id": "Retrieval:TrueCornersJam",
|
100 |
+
"id": "78644673-9236-4605-8110-59705fc38784",
|
101 |
+
"key": "ddl_input"
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"component_id": "Retrieval:LazyChefsWatch",
|
105 |
+
"id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
|
106 |
+
"key": "db_input"
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"component_id": "Retrieval:EasyDryersShop",
|
110 |
+
"id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
|
111 |
+
"key": "sql_input"
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"presence_penalty": 0.4,
|
115 |
+
"prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
|
116 |
+
"temperature": 0.1,
|
117 |
+
"top_p": 0.3
|
118 |
+
}
|
119 |
+
},
|
120 |
+
"downstream": [
|
121 |
+
"Answer:SocialAdsWonder"
|
122 |
+
],
|
123 |
+
"upstream": [
|
124 |
+
"Retrieval:TrueCornersJam",
|
125 |
+
"Retrieval:EasyDryersShop",
|
126 |
+
"Retrieval:LazyChefsWatch"
|
127 |
+
]
|
128 |
+
}
|
129 |
+
},
|
130 |
+
"embed_id": "",
|
131 |
+
"graph": {
|
132 |
+
"nodes": [
|
133 |
+
{
|
134 |
+
"data": {
|
135 |
+
"label": "Begin",
|
136 |
+
"name": "begin"
|
137 |
+
},
|
138 |
+
"dragging": false,
|
139 |
+
"height": 44,
|
140 |
+
"id": "begin",
|
141 |
+
"position": {
|
142 |
+
"x": -520.486587527275,
|
143 |
+
"y": 117.87988995940702
|
144 |
+
},
|
145 |
+
"positionAbsolute": {
|
146 |
+
"x": -520.486587527275,
|
147 |
+
"y": 117.87988995940702
|
148 |
+
},
|
149 |
+
"selected": false,
|
150 |
+
"sourcePosition": "left",
|
151 |
+
"targetPosition": "right",
|
152 |
+
"type": "beginNode",
|
153 |
+
"width": 100
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"data": {
|
157 |
+
"form": {},
|
158 |
+
"label": "Answer",
|
159 |
+
"name": "interface"
|
160 |
+
},
|
161 |
+
"dragging": false,
|
162 |
+
"height": 44,
|
163 |
+
"id": "Answer:SocialAdsWonder",
|
164 |
+
"position": {
|
165 |
+
"x": -284.9289105495367,
|
166 |
+
"y": 119.9282206409824
|
167 |
+
},
|
168 |
+
"positionAbsolute": {
|
169 |
+
"x": -284.9289105495367,
|
170 |
+
"y": 119.9282206409824
|
171 |
+
},
|
172 |
+
"selected": false,
|
173 |
+
"sourcePosition": "right",
|
174 |
+
"targetPosition": "left",
|
175 |
+
"type": "logicNode",
|
176 |
+
"width": 200
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"data": {
|
180 |
+
"form": {
|
181 |
+
"empty_response": "Nothing found in DDL!",
|
182 |
+
"kb_ids": [],
|
183 |
+
"keywords_similarity_weight": 0.3,
|
184 |
+
"similarity_threshold": 0.02,
|
185 |
+
"top_n": 8
|
186 |
+
},
|
187 |
+
"label": "Retrieval",
|
188 |
+
"name": "DDL"
|
189 |
+
},
|
190 |
+
"dragging": false,
|
191 |
+
"height": 44,
|
192 |
+
"id": "Retrieval:TrueCornersJam",
|
193 |
+
"position": {
|
194 |
+
"x": 119.61927071085717,
|
195 |
+
"y": -40.184181873335746
|
196 |
+
},
|
197 |
+
"positionAbsolute": {
|
198 |
+
"x": 119.61927071085717,
|
199 |
+
"y": -40.184181873335746
|
200 |
+
},
|
201 |
+
"selected": false,
|
202 |
+
"sourcePosition": "right",
|
203 |
+
"targetPosition": "left",
|
204 |
+
"type": "retrievalNode",
|
205 |
+
"width": 200
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"form": {
|
210 |
+
"empty_response": "Nothing found in Q-SQL!",
|
211 |
+
"kb_ids": [],
|
212 |
+
"keywords_similarity_weight": 0.3,
|
213 |
+
"similarity_threshold": 0.2,
|
214 |
+
"top_n": 8
|
215 |
+
},
|
216 |
+
"label": "Retrieval",
|
217 |
+
"name": "Q->SQL"
|
218 |
+
},
|
219 |
+
"dragging": false,
|
220 |
+
"height": 44,
|
221 |
+
"id": "Retrieval:EasyDryersShop",
|
222 |
+
"position": {
|
223 |
+
"x": 81.2024576603057,
|
224 |
+
"y": 94.16303322180948
|
225 |
+
},
|
226 |
+
"positionAbsolute": {
|
227 |
+
"x": 81.2024576603057,
|
228 |
+
"y": 94.16303322180948
|
229 |
+
},
|
230 |
+
"selected": false,
|
231 |
+
"sourcePosition": "right",
|
232 |
+
"targetPosition": "left",
|
233 |
+
"type": "retrievalNode",
|
234 |
+
"width": 200
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"data": {
|
238 |
+
"form": {
|
239 |
+
"empty_response": "Nothing found in DB-Description!",
|
240 |
+
"kb_ids": [],
|
241 |
+
"keywords_similarity_weight": 0.3,
|
242 |
+
"similarity_threshold": 0.2,
|
243 |
+
"top_n": 8
|
244 |
+
},
|
245 |
+
"label": "Retrieval",
|
246 |
+
"name": "DB Description"
|
247 |
+
},
|
248 |
+
"dragging": false,
|
249 |
+
"height": 44,
|
250 |
+
"id": "Retrieval:LazyChefsWatch",
|
251 |
+
"position": {
|
252 |
+
"x": 51.228157704293324,
|
253 |
+
"y": 252.77721891325103
|
254 |
+
},
|
255 |
+
"positionAbsolute": {
|
256 |
+
"x": 51.228157704293324,
|
257 |
+
"y": 252.77721891325103
|
258 |
+
},
|
259 |
+
"selected": false,
|
260 |
+
"sourcePosition": "right",
|
261 |
+
"targetPosition": "left",
|
262 |
+
"type": "retrievalNode",
|
263 |
+
"width": 200
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"data": {
|
267 |
+
"form": {
|
268 |
+
"cite": true,
|
269 |
+
"frequencyPenaltyEnabled": true,
|
270 |
+
"frequency_penalty": 0.7,
|
271 |
+
"llm_id": "deepseek-chat@DeepSeek",
|
272 |
+
"maxTokensEnabled": true,
|
273 |
+
"max_tokens": 256,
|
274 |
+
"message_history_window_size": 12,
|
275 |
+
"parameter": "Precise",
|
276 |
+
"parameters": [
|
277 |
+
{
|
278 |
+
"component_id": "Retrieval:TrueCornersJam",
|
279 |
+
"id": "78644673-9236-4605-8110-59705fc38784",
|
280 |
+
"key": "ddl_input"
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"component_id": "Retrieval:LazyChefsWatch",
|
284 |
+
"id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
|
285 |
+
"key": "db_input"
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"component_id": "Retrieval:EasyDryersShop",
|
289 |
+
"id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
|
290 |
+
"key": "sql_input"
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"presencePenaltyEnabled": true,
|
294 |
+
"presence_penalty": 0.4,
|
295 |
+
"prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
|
296 |
+
"temperature": 0.1,
|
297 |
+
"temperatureEnabled": true,
|
298 |
+
"topPEnabled": true,
|
299 |
+
"top_p": 0.3
|
300 |
+
},
|
301 |
+
"label": "Generate",
|
302 |
+
"name": "LLM"
|
303 |
+
},
|
304 |
+
"dragging": false,
|
305 |
+
"height": 212,
|
306 |
+
"id": "Generate:RareSymbolsGrin",
|
307 |
+
"position": {
|
308 |
+
"x": 6.6098512156750076,
|
309 |
+
"y": 405.0105548561454
|
310 |
+
},
|
311 |
+
"positionAbsolute": {
|
312 |
+
"x": 6.6098512156750076,
|
313 |
+
"y": 405.0105548561454
|
314 |
+
},
|
315 |
+
"selected": false,
|
316 |
+
"sourcePosition": "right",
|
317 |
+
"targetPosition": "left",
|
318 |
+
"type": "generateNode",
|
319 |
+
"width": 200
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"data": {
|
323 |
+
"form": {
|
324 |
+
"text": "Receives a sentence that the user wants to convert into SQL and displays the result of the large model's SQL conversion."
|
325 |
+
},
|
326 |
+
"label": "Note",
|
327 |
+
"name": "N: Interface"
|
328 |
+
},
|
329 |
+
"dragging": false,
|
330 |
+
"height": 132,
|
331 |
+
"id": "Note:GentleRabbitsWonder",
|
332 |
+
"position": {
|
333 |
+
"x": -287.3066094433631,
|
334 |
+
"y": -30.808189185380513
|
335 |
+
},
|
336 |
+
"positionAbsolute": {
|
337 |
+
"x": -287.3066094433631,
|
338 |
+
"y": -30.808189185380513
|
339 |
+
},
|
340 |
+
"resizing": false,
|
341 |
+
"selected": false,
|
342 |
+
"sourcePosition": "right",
|
343 |
+
"style": {
|
344 |
+
"height": 132,
|
345 |
+
"width": 324
|
346 |
+
},
|
347 |
+
"targetPosition": "left",
|
348 |
+
"type": "noteNode",
|
349 |
+
"width": 324,
|
350 |
+
"dragHandle": ".note-drag-handle"
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"data": {
|
354 |
+
"form": {
|
355 |
+
"text": "The large model learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
|
356 |
+
},
|
357 |
+
"label": "Note",
|
358 |
+
"name": "N: LLM"
|
359 |
+
},
|
360 |
+
"dragging": false,
|
361 |
+
"height": 147,
|
362 |
+
"id": "Note:SixCitiesJoke",
|
363 |
+
"position": {
|
364 |
+
"x": 5.12121582244032,
|
365 |
+
"y": 637.6539219843564
|
366 |
+
},
|
367 |
+
"positionAbsolute": {
|
368 |
+
"x": 5.12121582244032,
|
369 |
+
"y": 637.6539219843564
|
370 |
+
},
|
371 |
+
"resizing": false,
|
372 |
+
"selected": false,
|
373 |
+
"sourcePosition": "right",
|
374 |
+
"style": {
|
375 |
+
"height": 147,
|
376 |
+
"width": 326
|
377 |
+
},
|
378 |
+
"targetPosition": "left",
|
379 |
+
"type": "noteNode",
|
380 |
+
"width": 326,
|
381 |
+
"dragHandle": ".note-drag-handle"
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"data": {
|
385 |
+
"form": {
|
386 |
+
"text": "Searches for description about meanings of tables and fields."
|
387 |
+
},
|
388 |
+
"label": "Note",
|
389 |
+
"name": "N: DB description"
|
390 |
+
},
|
391 |
+
"dragging": false,
|
392 |
+
"height": 128,
|
393 |
+
"id": "Note:FamousCarpetsTaste",
|
394 |
+
"position": {
|
395 |
+
"x": 399.9267065852242,
|
396 |
+
"y": 250.0329701879931
|
397 |
+
},
|
398 |
+
"positionAbsolute": {
|
399 |
+
"x": 399.9267065852242,
|
400 |
+
"y": 250.0329701879931
|
401 |
+
},
|
402 |
+
"selected": false,
|
403 |
+
"sourcePosition": "right",
|
404 |
+
"targetPosition": "left",
|
405 |
+
"type": "noteNode",
|
406 |
+
"width": 269,
|
407 |
+
"dragHandle": ".note-drag-handle"
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"data": {
|
411 |
+
"form": {
|
412 |
+
"text": "Searches for samples about question to SQL.\nPlease check this dataset: https://huggingface.co/datasets/InfiniFlow/text2sql"
|
413 |
+
},
|
414 |
+
"label": "Note",
|
415 |
+
"name": "N: Q->SQL"
|
416 |
+
},
|
417 |
+
"dragging": false,
|
418 |
+
"height": 130,
|
419 |
+
"id": "Note:PoliteBeesArrive",
|
420 |
+
"position": {
|
421 |
+
"x": 489.0393427986917,
|
422 |
+
"y": 96.58232093146341
|
423 |
+
},
|
424 |
+
"positionAbsolute": {
|
425 |
+
"x": 489.0393427986917,
|
426 |
+
"y": 96.58232093146341
|
427 |
+
},
|
428 |
+
"resizing": false,
|
429 |
+
"selected": false,
|
430 |
+
"sourcePosition": "right",
|
431 |
+
"style": {
|
432 |
+
"height": 130,
|
433 |
+
"width": 451
|
434 |
+
},
|
435 |
+
"targetPosition": "left",
|
436 |
+
"type": "noteNode",
|
437 |
+
"width": 451,
|
438 |
+
"dragHandle": ".note-drag-handle"
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"data": {
|
442 |
+
"form": {
|
443 |
+
"text": "DDL(Data Definition Language).\n\nSearches for relevant database creation statements.\n\nIt should bind with a KB to which DDL is dumped in.\nYou could use 'General' as parsing method and ';' as delimiter."
|
444 |
+
},
|
445 |
+
"label": "Note",
|
446 |
+
"name": "N: DDL"
|
447 |
+
},
|
448 |
+
"dragging": false,
|
449 |
+
"height": 258,
|
450 |
+
"id": "Note:SmartWingsDouble",
|
451 |
+
"position": {
|
452 |
+
"x": 404.1930553966363,
|
453 |
+
"y": -208.84980249039137
|
454 |
+
},
|
455 |
+
"positionAbsolute": {
|
456 |
+
"x": 404.1930553966363,
|
457 |
+
"y": -208.84980249039137
|
458 |
+
},
|
459 |
+
"resizing": false,
|
460 |
+
"selected": false,
|
461 |
+
"sourcePosition": "right",
|
462 |
+
"style": {
|
463 |
+
"height": 258,
|
464 |
+
"width": 283
|
465 |
+
},
|
466 |
+
"targetPosition": "left",
|
467 |
+
"type": "noteNode",
|
468 |
+
"width": 283,
|
469 |
+
"dragHandle": ".note-drag-handle"
|
470 |
+
}
|
471 |
+
],
|
472 |
+
"edges": [
|
473 |
+
{
|
474 |
+
"id": "reactflow__edge-begin-Answer:SocialAdsWonderc",
|
475 |
+
"markerEnd": "logo",
|
476 |
+
"source": "begin",
|
477 |
+
"sourceHandle": null,
|
478 |
+
"style": {
|
479 |
+
"stroke": "rgb(202 197 245)",
|
480 |
+
"strokeWidth": 2
|
481 |
+
},
|
482 |
+
"target": "Answer:SocialAdsWonder",
|
483 |
+
"targetHandle": "c",
|
484 |
+
"type": "buttonEdge"
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:TrueCornersJamc",
|
488 |
+
"markerEnd": "logo",
|
489 |
+
"source": "Answer:SocialAdsWonder",
|
490 |
+
"sourceHandle": "b",
|
491 |
+
"style": {
|
492 |
+
"stroke": "rgb(202 197 245)",
|
493 |
+
"strokeWidth": 2
|
494 |
+
},
|
495 |
+
"target": "Retrieval:TrueCornersJam",
|
496 |
+
"targetHandle": "c",
|
497 |
+
"type": "buttonEdge"
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:EasyDryersShopc",
|
501 |
+
"markerEnd": "logo",
|
502 |
+
"source": "Answer:SocialAdsWonder",
|
503 |
+
"sourceHandle": "b",
|
504 |
+
"style": {
|
505 |
+
"stroke": "rgb(202 197 245)",
|
506 |
+
"strokeWidth": 2
|
507 |
+
},
|
508 |
+
"target": "Retrieval:EasyDryersShop",
|
509 |
+
"targetHandle": "c",
|
510 |
+
"type": "buttonEdge"
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:LazyChefsWatchc",
|
514 |
+
"markerEnd": "logo",
|
515 |
+
"source": "Answer:SocialAdsWonder",
|
516 |
+
"sourceHandle": "b",
|
517 |
+
"style": {
|
518 |
+
"stroke": "rgb(202 197 245)",
|
519 |
+
"strokeWidth": 2
|
520 |
+
},
|
521 |
+
"target": "Retrieval:LazyChefsWatch",
|
522 |
+
"targetHandle": "c",
|
523 |
+
"type": "buttonEdge"
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"id": "reactflow__edge-Retrieval:TrueCornersJamb-Generate:RareSymbolsGrinb",
|
527 |
+
"markerEnd": "logo",
|
528 |
+
"source": "Retrieval:TrueCornersJam",
|
529 |
+
"sourceHandle": "b",
|
530 |
+
"style": {
|
531 |
+
"stroke": "rgb(202 197 245)",
|
532 |
+
"strokeWidth": 2
|
533 |
+
},
|
534 |
+
"target": "Generate:RareSymbolsGrin",
|
535 |
+
"targetHandle": "b",
|
536 |
+
"type": "buttonEdge"
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"id": "reactflow__edge-Retrieval:EasyDryersShopb-Generate:RareSymbolsGrinb",
|
540 |
+
"markerEnd": "logo",
|
541 |
+
"source": "Retrieval:EasyDryersShop",
|
542 |
+
"sourceHandle": "b",
|
543 |
+
"style": {
|
544 |
+
"stroke": "rgb(202 197 245)",
|
545 |
+
"strokeWidth": 2
|
546 |
+
},
|
547 |
+
"target": "Generate:RareSymbolsGrin",
|
548 |
+
"targetHandle": "b",
|
549 |
+
"type": "buttonEdge"
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"id": "reactflow__edge-Retrieval:LazyChefsWatchb-Generate:RareSymbolsGrinb",
|
553 |
+
"markerEnd": "logo",
|
554 |
+
"source": "Retrieval:LazyChefsWatch",
|
555 |
+
"sourceHandle": "b",
|
556 |
+
"style": {
|
557 |
+
"stroke": "rgb(202 197 245)",
|
558 |
+
"strokeWidth": 2
|
559 |
+
},
|
560 |
+
"target": "Generate:RareSymbolsGrin",
|
561 |
+
"targetHandle": "b",
|
562 |
+
"type": "buttonEdge"
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"id": "reactflow__edge-Generate:RareSymbolsGrinc-Answer:SocialAdsWonderc",
|
566 |
+
"markerEnd": "logo",
|
567 |
+
"source": "Generate:RareSymbolsGrin",
|
568 |
+
"sourceHandle": "c",
|
569 |
+
"style": {
|
570 |
+
"stroke": "rgb(202 197 245)",
|
571 |
+
"strokeWidth": 2
|
572 |
+
},
|
573 |
+
"target": "Answer:SocialAdsWonder",
|
574 |
+
"targetHandle": "c",
|
575 |
+
"type": "buttonEdge"
|
576 |
+
}
|
577 |
+
]
|
578 |
+
},
|
579 |
+
"history": [],
|
580 |
+
"messages": [],
|
581 |
+
"path": [],
|
582 |
+
"reference": []
|
583 |
+
},
|
584 |
+
"avatar": ""
|
585 |
+
}
|
agent/test/dsl_examples/concentrator_message.json
CHANGED
@@ -1,113 +1,113 @@
|
|
1 |
-
{
|
2 |
-
"components": {
|
3 |
-
"begin": {
|
4 |
-
"obj":{
|
5 |
-
"component_name": "Begin",
|
6 |
-
"params": {
|
7 |
-
"prologue": "Hi there!"
|
8 |
-
}
|
9 |
-
},
|
10 |
-
"downstream": ["answer:0"],
|
11 |
-
"upstream": []
|
12 |
-
},
|
13 |
-
"answer:0": {
|
14 |
-
"obj": {
|
15 |
-
"component_name": "Answer",
|
16 |
-
"params": {}
|
17 |
-
},
|
18 |
-
"downstream": ["categorize:0"],
|
19 |
-
"upstream": ["begin"]
|
20 |
-
},
|
21 |
-
"categorize:0": {
|
22 |
-
"obj": {
|
23 |
-
"component_name": "Categorize",
|
24 |
-
"params": {
|
25 |
-
"llm_id": "deepseek-chat",
|
26 |
-
"category_description": {
|
27 |
-
"product_related": {
|
28 |
-
"description": "The question is about the product usage, appearance and how it works.",
|
29 |
-
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
|
30 |
-
"to": "concentrator:0"
|
31 |
-
},
|
32 |
-
"others": {
|
33 |
-
"description": "The question is not about the product usage, appearance and how it works.",
|
34 |
-
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
|
35 |
-
"to": "concentrator:1"
|
36 |
-
}
|
37 |
-
}
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"downstream": ["concentrator:0","concentrator:1"],
|
41 |
-
"upstream": ["answer:0"]
|
42 |
-
},
|
43 |
-
"concentrator:0": {
|
44 |
-
"obj": {
|
45 |
-
"component_name": "Concentrator",
|
46 |
-
"params": {}
|
47 |
-
},
|
48 |
-
"downstream": ["message:0"],
|
49 |
-
"upstream": ["categorize:0"]
|
50 |
-
},
|
51 |
-
"concentrator:1": {
|
52 |
-
"obj": {
|
53 |
-
"component_name": "Concentrator",
|
54 |
-
"params": {}
|
55 |
-
},
|
56 |
-
"downstream": ["message:1_0","message:1_1","message:1_2"],
|
57 |
-
"upstream": ["categorize:0"]
|
58 |
-
},
|
59 |
-
"message:0": {
|
60 |
-
"obj": {
|
61 |
-
"component_name": "Message",
|
62 |
-
"params": {
|
63 |
-
"messages": [
|
64 |
-
"Message 0_0!!!!!!!"
|
65 |
-
]
|
66 |
-
}
|
67 |
-
},
|
68 |
-
"downstream": ["answer:0"],
|
69 |
-
"upstream": ["concentrator:0"]
|
70 |
-
},
|
71 |
-
"message:1_0": {
|
72 |
-
"obj": {
|
73 |
-
"component_name": "Message",
|
74 |
-
"params": {
|
75 |
-
"messages": [
|
76 |
-
"Message 1_0!!!!!!!"
|
77 |
-
]
|
78 |
-
}
|
79 |
-
},
|
80 |
-
"downstream": ["answer:0"],
|
81 |
-
"upstream": ["concentrator:1"]
|
82 |
-
},
|
83 |
-
"message:1_1": {
|
84 |
-
"obj": {
|
85 |
-
"component_name": "Message",
|
86 |
-
"params": {
|
87 |
-
"messages": [
|
88 |
-
"Message 1_1!!!!!!!"
|
89 |
-
]
|
90 |
-
}
|
91 |
-
},
|
92 |
-
"downstream": ["answer:0"],
|
93 |
-
"upstream": ["concentrator:1"]
|
94 |
-
},
|
95 |
-
"message:1_2": {
|
96 |
-
"obj": {
|
97 |
-
"component_name": "Message",
|
98 |
-
"params": {
|
99 |
-
"messages": [
|
100 |
-
"Message 1_2!!!!!!!"
|
101 |
-
]
|
102 |
-
}
|
103 |
-
},
|
104 |
-
"downstream": ["answer:0"],
|
105 |
-
"upstream": ["concentrator:1"]
|
106 |
-
}
|
107 |
-
},
|
108 |
-
"history": [],
|
109 |
-
"messages": [],
|
110 |
-
"path": [],
|
111 |
-
"reference": [],
|
112 |
-
"answer": []
|
113 |
}
|
|
|
1 |
+
{
|
2 |
+
"components": {
|
3 |
+
"begin": {
|
4 |
+
"obj":{
|
5 |
+
"component_name": "Begin",
|
6 |
+
"params": {
|
7 |
+
"prologue": "Hi there!"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"downstream": ["answer:0"],
|
11 |
+
"upstream": []
|
12 |
+
},
|
13 |
+
"answer:0": {
|
14 |
+
"obj": {
|
15 |
+
"component_name": "Answer",
|
16 |
+
"params": {}
|
17 |
+
},
|
18 |
+
"downstream": ["categorize:0"],
|
19 |
+
"upstream": ["begin"]
|
20 |
+
},
|
21 |
+
"categorize:0": {
|
22 |
+
"obj": {
|
23 |
+
"component_name": "Categorize",
|
24 |
+
"params": {
|
25 |
+
"llm_id": "deepseek-chat",
|
26 |
+
"category_description": {
|
27 |
+
"product_related": {
|
28 |
+
"description": "The question is about the product usage, appearance and how it works.",
|
29 |
+
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
|
30 |
+
"to": "concentrator:0"
|
31 |
+
},
|
32 |
+
"others": {
|
33 |
+
"description": "The question is not about the product usage, appearance and how it works.",
|
34 |
+
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
|
35 |
+
"to": "concentrator:1"
|
36 |
+
}
|
37 |
+
}
|
38 |
+
}
|
39 |
+
},
|
40 |
+
"downstream": ["concentrator:0","concentrator:1"],
|
41 |
+
"upstream": ["answer:0"]
|
42 |
+
},
|
43 |
+
"concentrator:0": {
|
44 |
+
"obj": {
|
45 |
+
"component_name": "Concentrator",
|
46 |
+
"params": {}
|
47 |
+
},
|
48 |
+
"downstream": ["message:0"],
|
49 |
+
"upstream": ["categorize:0"]
|
50 |
+
},
|
51 |
+
"concentrator:1": {
|
52 |
+
"obj": {
|
53 |
+
"component_name": "Concentrator",
|
54 |
+
"params": {}
|
55 |
+
},
|
56 |
+
"downstream": ["message:1_0","message:1_1","message:1_2"],
|
57 |
+
"upstream": ["categorize:0"]
|
58 |
+
},
|
59 |
+
"message:0": {
|
60 |
+
"obj": {
|
61 |
+
"component_name": "Message",
|
62 |
+
"params": {
|
63 |
+
"messages": [
|
64 |
+
"Message 0_0!!!!!!!"
|
65 |
+
]
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"downstream": ["answer:0"],
|
69 |
+
"upstream": ["concentrator:0"]
|
70 |
+
},
|
71 |
+
"message:1_0": {
|
72 |
+
"obj": {
|
73 |
+
"component_name": "Message",
|
74 |
+
"params": {
|
75 |
+
"messages": [
|
76 |
+
"Message 1_0!!!!!!!"
|
77 |
+
]
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"downstream": ["answer:0"],
|
81 |
+
"upstream": ["concentrator:1"]
|
82 |
+
},
|
83 |
+
"message:1_1": {
|
84 |
+
"obj": {
|
85 |
+
"component_name": "Message",
|
86 |
+
"params": {
|
87 |
+
"messages": [
|
88 |
+
"Message 1_1!!!!!!!"
|
89 |
+
]
|
90 |
+
}
|
91 |
+
},
|
92 |
+
"downstream": ["answer:0"],
|
93 |
+
"upstream": ["concentrator:1"]
|
94 |
+
},
|
95 |
+
"message:1_2": {
|
96 |
+
"obj": {
|
97 |
+
"component_name": "Message",
|
98 |
+
"params": {
|
99 |
+
"messages": [
|
100 |
+
"Message 1_2!!!!!!!"
|
101 |
+
]
|
102 |
+
}
|
103 |
+
},
|
104 |
+
"downstream": ["answer:0"],
|
105 |
+
"upstream": ["concentrator:1"]
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"history": [],
|
109 |
+
"messages": [],
|
110 |
+
"path": [],
|
111 |
+
"reference": [],
|
112 |
+
"answer": []
|
113 |
}
|
rag/svr/cache_file_svr.py
CHANGED
@@ -1,60 +1,60 @@
|
|
1 |
-
#
|
2 |
-
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
import logging
|
17 |
-
import time
|
18 |
-
import traceback
|
19 |
-
|
20 |
-
from api.db.db_models import close_connection
|
21 |
-
from api.db.services.task_service import TaskService
|
22 |
-
from rag.utils.storage_factory import STORAGE_IMPL
|
23 |
-
from rag.utils.redis_conn import REDIS_CONN
|
24 |
-
|
25 |
-
|
26 |
-
def collect():
|
27 |
-
doc_locations = TaskService.get_ongoing_doc_name()
|
28 |
-
logging.debug(doc_locations)
|
29 |
-
if len(doc_locations) == 0:
|
30 |
-
time.sleep(1)
|
31 |
-
return
|
32 |
-
return doc_locations
|
33 |
-
|
34 |
-
|
35 |
-
def main():
|
36 |
-
locations = collect()
|
37 |
-
if not locations:
|
38 |
-
return
|
39 |
-
logging.info(f"TASKS: {len(locations)}")
|
40 |
-
for kb_id, loc in locations:
|
41 |
-
try:
|
42 |
-
if REDIS_CONN.is_alive():
|
43 |
-
try:
|
44 |
-
key = "{}/{}".format(kb_id, loc)
|
45 |
-
if REDIS_CONN.exist(key):
|
46 |
-
continue
|
47 |
-
file_bin = STORAGE_IMPL.get(kb_id, loc)
|
48 |
-
REDIS_CONN.transaction(key, file_bin, 12 * 60)
|
49 |
-
logging.info("CACHE: {}".format(loc))
|
50 |
-
except Exception as e:
|
51 |
-
traceback.print_stack(e)
|
52 |
-
except Exception as e:
|
53 |
-
traceback.print_stack(e)
|
54 |
-
|
55 |
-
|
56 |
-
if __name__ == "__main__":
|
57 |
-
while True:
|
58 |
-
main()
|
59 |
-
close_connection()
|
60 |
time.sleep(1)
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
import logging
|
17 |
+
import time
|
18 |
+
import traceback
|
19 |
+
|
20 |
+
from api.db.db_models import close_connection
|
21 |
+
from api.db.services.task_service import TaskService
|
22 |
+
from rag.utils.storage_factory import STORAGE_IMPL
|
23 |
+
from rag.utils.redis_conn import REDIS_CONN
|
24 |
+
|
25 |
+
|
26 |
+
def collect():
|
27 |
+
doc_locations = TaskService.get_ongoing_doc_name()
|
28 |
+
logging.debug(doc_locations)
|
29 |
+
if len(doc_locations) == 0:
|
30 |
+
time.sleep(1)
|
31 |
+
return
|
32 |
+
return doc_locations
|
33 |
+
|
34 |
+
|
35 |
+
def main():
|
36 |
+
locations = collect()
|
37 |
+
if not locations:
|
38 |
+
return
|
39 |
+
logging.info(f"TASKS: {len(locations)}")
|
40 |
+
for kb_id, loc in locations:
|
41 |
+
try:
|
42 |
+
if REDIS_CONN.is_alive():
|
43 |
+
try:
|
44 |
+
key = "{}/{}".format(kb_id, loc)
|
45 |
+
if REDIS_CONN.exist(key):
|
46 |
+
continue
|
47 |
+
file_bin = STORAGE_IMPL.get(kb_id, loc)
|
48 |
+
REDIS_CONN.transaction(key, file_bin, 12 * 60)
|
49 |
+
logging.info("CACHE: {}".format(loc))
|
50 |
+
except Exception as e:
|
51 |
+
traceback.print_stack(e)
|
52 |
+
except Exception as e:
|
53 |
+
traceback.print_stack(e)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
while True:
|
58 |
+
main()
|
59 |
+
close_connection()
|
60 |
time.sleep(1)
|
sdk/python/ragflow_sdk/modules/base.py
CHANGED
@@ -1,38 +1,38 @@
|
|
1 |
-
class Base(object):
|
2 |
-
def __init__(self, rag, res_dict):
|
3 |
-
self.rag = rag
|
4 |
-
for k, v in res_dict.items():
|
5 |
-
if isinstance(v, dict):
|
6 |
-
self.__dict__[k] = Base(rag, v)
|
7 |
-
else:
|
8 |
-
self.__dict__[k] = v
|
9 |
-
|
10 |
-
def to_json(self):
|
11 |
-
pr = {}
|
12 |
-
for name in dir(self):
|
13 |
-
value = getattr(self, name)
|
14 |
-
if not name.startswith('__') and not callable(value) and name != "rag":
|
15 |
-
if isinstance(value, Base):
|
16 |
-
pr[name] = value.to_json()
|
17 |
-
else:
|
18 |
-
pr[name] = value
|
19 |
-
return pr
|
20 |
-
|
21 |
-
def post(self, path, json=None, stream=False, files=None):
|
22 |
-
res = self.rag.post(path, json, stream=stream,files=files)
|
23 |
-
return res
|
24 |
-
|
25 |
-
def get(self, path, params=None):
|
26 |
-
res = self.rag.get(path, params)
|
27 |
-
return res
|
28 |
-
|
29 |
-
def rm(self, path, json):
|
30 |
-
res = self.rag.delete(path, json)
|
31 |
-
return res
|
32 |
-
|
33 |
-
def put(self,path, json):
|
34 |
-
res = self.rag.put(path,json)
|
35 |
-
return res
|
36 |
-
|
37 |
-
def __str__(self):
|
38 |
-
return str(self.to_json())
|
|
|
1 |
+
class Base(object):
|
2 |
+
def __init__(self, rag, res_dict):
|
3 |
+
self.rag = rag
|
4 |
+
for k, v in res_dict.items():
|
5 |
+
if isinstance(v, dict):
|
6 |
+
self.__dict__[k] = Base(rag, v)
|
7 |
+
else:
|
8 |
+
self.__dict__[k] = v
|
9 |
+
|
10 |
+
def to_json(self):
|
11 |
+
pr = {}
|
12 |
+
for name in dir(self):
|
13 |
+
value = getattr(self, name)
|
14 |
+
if not name.startswith('__') and not callable(value) and name != "rag":
|
15 |
+
if isinstance(value, Base):
|
16 |
+
pr[name] = value.to_json()
|
17 |
+
else:
|
18 |
+
pr[name] = value
|
19 |
+
return pr
|
20 |
+
|
21 |
+
def post(self, path, json=None, stream=False, files=None):
|
22 |
+
res = self.rag.post(path, json, stream=stream,files=files)
|
23 |
+
return res
|
24 |
+
|
25 |
+
def get(self, path, params=None):
|
26 |
+
res = self.rag.get(path, params)
|
27 |
+
return res
|
28 |
+
|
29 |
+
def rm(self, path, json):
|
30 |
+
res = self.rag.delete(path, json)
|
31 |
+
return res
|
32 |
+
|
33 |
+
def put(self,path, json):
|
34 |
+
res = self.rag.put(path,json)
|
35 |
+
return res
|
36 |
+
|
37 |
+
def __str__(self):
|
38 |
+
return str(self.to_json())
|
sdk/python/ragflow_sdk/modules/session.py
CHANGED
@@ -1,73 +1,73 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
from .base import Base
|
4 |
-
|
5 |
-
|
6 |
-
class Session(Base):
|
7 |
-
def __init__(self, rag, res_dict):
|
8 |
-
self.id = None
|
9 |
-
self.name = "New session"
|
10 |
-
self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
|
11 |
-
for key,value in res_dict.items():
|
12 |
-
if key =="chat_id" and value is not None:
|
13 |
-
self.chat_id = None
|
14 |
-
self.__session_type = "chat"
|
15 |
-
if key == "agent_id" and value is not None:
|
16 |
-
self.agent_id = None
|
17 |
-
self.__session_type = "agent"
|
18 |
-
super().__init__(rag, res_dict)
|
19 |
-
|
20 |
-
def ask(self, question="",stream=True,**kwargs):
|
21 |
-
if self.__session_type == "agent":
|
22 |
-
res=self._ask_agent(question,stream)
|
23 |
-
elif self.__session_type == "chat":
|
24 |
-
res=self._ask_chat(question,stream,**kwargs)
|
25 |
-
for line in res.iter_lines():
|
26 |
-
line = line.decode("utf-8")
|
27 |
-
if line.startswith("{"):
|
28 |
-
json_data = json.loads(line)
|
29 |
-
raise Exception(json_data["message"])
|
30 |
-
if not line.startswith("data:"):
|
31 |
-
continue
|
32 |
-
json_data = json.loads(line[5:])
|
33 |
-
if json_data["data"] is True or json_data["data"].get("running_status"):
|
34 |
-
continue
|
35 |
-
answer = json_data["data"]["answer"]
|
36 |
-
reference = json_data["data"].get("reference", {})
|
37 |
-
temp_dict = {
|
38 |
-
"content": answer,
|
39 |
-
"role": "assistant"
|
40 |
-
}
|
41 |
-
if reference and "chunks" in reference:
|
42 |
-
chunks = reference["chunks"]
|
43 |
-
temp_dict["reference"] = chunks
|
44 |
-
message = Message(self.rag, temp_dict)
|
45 |
-
yield message
|
46 |
-
|
47 |
-
def _ask_chat(self, question: str, stream: bool,**kwargs):
|
48 |
-
json_data={"question": question, "stream": True,"session_id":self.id}
|
49 |
-
json_data.update(kwargs)
|
50 |
-
res = self.post(f"/chats/{self.chat_id}/completions",
|
51 |
-
json_data, stream=stream)
|
52 |
-
return res
|
53 |
-
|
54 |
-
def _ask_agent(self,question:str,stream:bool):
|
55 |
-
res = self.post(f"/agents/{self.agent_id}/completions",
|
56 |
-
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
57 |
-
return res
|
58 |
-
|
59 |
-
def update(self,update_message):
|
60 |
-
res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
|
61 |
-
update_message)
|
62 |
-
res = res.json()
|
63 |
-
if res.get("code") != 0:
|
64 |
-
raise Exception(res.get("message"))
|
65 |
-
|
66 |
-
class Message(Base):
|
67 |
-
def __init__(self, rag, res_dict):
|
68 |
-
self.content = "Hi! I am your assistant,can I help you?"
|
69 |
-
self.reference = None
|
70 |
-
self.role = "assistant"
|
71 |
-
self.prompt = None
|
72 |
-
self.id = None
|
73 |
-
super().__init__(rag, res_dict)
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
from .base import Base
|
4 |
+
|
5 |
+
|
6 |
+
class Session(Base):
|
7 |
+
def __init__(self, rag, res_dict):
|
8 |
+
self.id = None
|
9 |
+
self.name = "New session"
|
10 |
+
self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
|
11 |
+
for key,value in res_dict.items():
|
12 |
+
if key =="chat_id" and value is not None:
|
13 |
+
self.chat_id = None
|
14 |
+
self.__session_type = "chat"
|
15 |
+
if key == "agent_id" and value is not None:
|
16 |
+
self.agent_id = None
|
17 |
+
self.__session_type = "agent"
|
18 |
+
super().__init__(rag, res_dict)
|
19 |
+
|
20 |
+
def ask(self, question="",stream=True,**kwargs):
|
21 |
+
if self.__session_type == "agent":
|
22 |
+
res=self._ask_agent(question,stream)
|
23 |
+
elif self.__session_type == "chat":
|
24 |
+
res=self._ask_chat(question,stream,**kwargs)
|
25 |
+
for line in res.iter_lines():
|
26 |
+
line = line.decode("utf-8")
|
27 |
+
if line.startswith("{"):
|
28 |
+
json_data = json.loads(line)
|
29 |
+
raise Exception(json_data["message"])
|
30 |
+
if not line.startswith("data:"):
|
31 |
+
continue
|
32 |
+
json_data = json.loads(line[5:])
|
33 |
+
if json_data["data"] is True or json_data["data"].get("running_status"):
|
34 |
+
continue
|
35 |
+
answer = json_data["data"]["answer"]
|
36 |
+
reference = json_data["data"].get("reference", {})
|
37 |
+
temp_dict = {
|
38 |
+
"content": answer,
|
39 |
+
"role": "assistant"
|
40 |
+
}
|
41 |
+
if reference and "chunks" in reference:
|
42 |
+
chunks = reference["chunks"]
|
43 |
+
temp_dict["reference"] = chunks
|
44 |
+
message = Message(self.rag, temp_dict)
|
45 |
+
yield message
|
46 |
+
|
47 |
+
def _ask_chat(self, question: str, stream: bool,**kwargs):
|
48 |
+
json_data={"question": question, "stream": True,"session_id":self.id}
|
49 |
+
json_data.update(kwargs)
|
50 |
+
res = self.post(f"/chats/{self.chat_id}/completions",
|
51 |
+
json_data, stream=stream)
|
52 |
+
return res
|
53 |
+
|
54 |
+
def _ask_agent(self,question:str,stream:bool):
|
55 |
+
res = self.post(f"/agents/{self.agent_id}/completions",
|
56 |
+
{"question": question, "stream": True,"session_id":self.id}, stream=stream)
|
57 |
+
return res
|
58 |
+
|
59 |
+
def update(self,update_message):
|
60 |
+
res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
|
61 |
+
update_message)
|
62 |
+
res = res.json()
|
63 |
+
if res.get("code") != 0:
|
64 |
+
raise Exception(res.get("message"))
|
65 |
+
|
66 |
+
class Message(Base):
|
67 |
+
def __init__(self, rag, res_dict):
|
68 |
+
self.content = "Hi! I am your assistant,can I help you?"
|
69 |
+
self.reference = None
|
70 |
+
self.role = "assistant"
|
71 |
+
self.prompt = None
|
72 |
+
self.id = None
|
73 |
+
super().__init__(rag, res_dict)
|