Spaces:
Running
Running
File size: 8,584 Bytes
926675f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import re
import string
from collections import Counter
import numpy as np
import pandas as pd
import tqdm
from langchain.evaluation.qa import QAEvalChain
from langchain.llms import OpenAI
from algos.PWS import PWS_Base, PWS_Extra
from algos.notool import CoT, IO
from algos.react import ReactBase
def normalize_answer(s):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
if normalized_prediction in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return 0
if normalized_ground_truth in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return 0
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def llm_accuracy_score(query, prediction, ground_truth):
data = [{
'query': query,
'answer': ground_truth,
}]
pred = [{
'query': query,
'answer': ground_truth,
'result': prediction,
}]
eval_chain = QAEvalChain.from_llm(OpenAI(temperature=0))
graded_outputs = eval_chain.evaluate(data, pred)
return 1 if graded_outputs[0]['text'].strip() == 'CORRECT' else 0
class Evaluator:
def __init__(self, task, dataset, algo, maxtry=3):
assert task in ["hotpot_qa", "trivia_qa", "gsm8k", "physics_question", "disfl_qa",
"sports_understanding", "strategy_qa", "sotu_qa"]
assert isinstance(dataset, pd.DataFrame)
assert isinstance(algo, (PWS_Base, PWS_Extra, ReactBase, IO, CoT))
self.task = task
self.dataset = dataset
self.algo = algo
self.maxtry = maxtry
self.failed_response = self._failed_response()
self.eval_data = self._initialize_eval_dict()
def run(self):
print("\n******************* Start Evaluation *******************\n")
if self.task in ["hotpot_qa", "sotu_qa"]:
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["question"][i]
label = self.dataset["answer"][i]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task == "fever":
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["claim"][i]
label = self.dataset["label"][i]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task == "trivia_qa":
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["question"][i]
label = self.dataset["answer"][i]["value"]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task == "gsm8k":
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["question"][i]
label = self.dataset["answer"][i].split("#### ")[1]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
elif self.task in ["physics_question", "sports_understanding", "strategy_qa"]:
for i in tqdm.tqdm(range(len(self.dataset))):
question = self.dataset["input"][i]
label = self.dataset["target"][i]
for _ in range(self.maxtry):
try:
response = self.algo.run(question)
break
except:
response = self.failed_response
self._update_eval_dict(question, label, response)
else:
raise NotImplementedError
return self._get_avg_results(), self.eval_data
def _initialize_eval_dict(self):
data = {}
for d in ["label", "preds", "em", "f1", "acc", "wall_time", "total_tokens", "total_cost", "steps", "token_cost",
"tool_cost", "planner_log", "solver_log"]:
data[d] = []
return data
def _update_eval_dict(self, question, label, response):
pred = self._parse_prediction(response["output"])
self.eval_data["label"] += [label]
self.eval_data["preds"] += [pred]
self.eval_data["em"] += [self.get_metrics(question, label, pred)["em"]]
self.eval_data["f1"] += [self.get_metrics(question, label, pred)["f1"]]
self.eval_data["acc"] += [self.get_metrics(question, label, pred)["acc"]]
self.eval_data["wall_time"] += [response["wall_time"]]
self.eval_data["total_tokens"] += [response["total_tokens"]]
self.eval_data["total_cost"] += [response["total_cost"]]
self.eval_data["steps"] += [response["steps"]]
self.eval_data["token_cost"] += [response["token_cost"]]
self.eval_data["tool_cost"] += [response["tool_cost"]]
if "planner_log" in response:
self.eval_data["planner_log"] += [response["planner_log"]]
if "solver_log" in response:
self.eval_data["solver_log"] += [response["solver_log"]]
def _get_avg_results(self):
result = {}
result["avg_em"] = np.nanmean(self.eval_data["em"])
result["avg_f1"] = np.nanmean(self.eval_data["f1"])
result["avg_acc"] = np.nanmean(self.eval_data["acc"])
result["avg_wall_time"] = np.nanmean(self.eval_data["wall_time"])
result["avg_total_tokens"] = np.nanmean(self.eval_data["total_tokens"])
result["avg_total_cost"] = np.nanmean(self.eval_data["total_cost"])
result["avg_steps"] = np.nanmean(self.eval_data["steps"])
result["avg_token_cost"] = np.nanmean(self.eval_data["token_cost"])
result["avg_tool_cost"] = np.nanmean(self.eval_data["tool_cost"])
return result
def get_metrics(self, query, label, pred):
if pred is None:
return {'em': 0, 'f1': 0}
norm_label = normalize_answer(label)
norm_pred = normalize_answer(pred)
em = (norm_pred == norm_label)
f1 = f1_score(norm_pred, norm_label)
acc = llm_accuracy_score(query, pred, label)
return {'em': em, 'f1': f1, 'acc': acc}
def _parse_prediction(self, output):
if isinstance(self.algo, IO):
return str(output).strip("\n")
elif isinstance(self.algo, CoT):
return str(output).split("\n")[-1].replace("Answer:", "")
elif isinstance(self.algo, ReactBase):
return str(output).strip("\n")
elif isinstance(self.algo, PWS_Base):
return str(output).strip("\n")
elif isinstance(self.algo, PWS_Extra):
return str(output).strip("\n")
def _failed_response(self):
resposne = {}
for key in ["input", "output", "wall_time", "total_tokens", "total_cost", "steps", "token_cost", "tool_cost"]:
resposne[key] = np.nan
return resposne
|