import os import sys import torch from peft import PeftModel from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer from alpaca.utils.prompter import Prompter if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: # noqa: E722 pass class AlpacaLora: def __init__(self, load_8bit: bool = True, base_model: str = "decapoda-research/llama-7b-hf", lora_weights: str = "tloen/alpaca-lora-7b", prompt_template: str = ""): base_model = base_model or os.environ.get("BASE_MODEL", "") assert ( base_model ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" self.prompter = Prompter(prompt_template) self.tokenizer = LlamaTokenizer.from_pretrained(base_model) if device == "cuda": self.model = LlamaForCausalLM.from_pretrained( base_model, load_in_8bit=load_8bit, torch_dtype=torch.float16, device_map="auto", ) self.model = PeftModel.from_pretrained( self.model, lora_weights, torch_dtype=torch.float16, ) elif device == "mps": self.model = LlamaForCausalLM.from_pretrained( base_model, device_map={"": device}, torch_dtype=torch.float16, ) self.model = PeftModel.from_pretrained( self.model, lora_weights, device_map={"": device}, torch_dtype=torch.float16, ) else: self.model = LlamaForCausalLM.from_pretrained( base_model, device_map={"": device}, low_cpu_mem_usage=True ) self.model = PeftModel.from_pretrained( self.model, lora_weights, device_map={"": device}, ) # unwind broken decapoda-research config self.model.config.pad_token_id = self.tokenizer.pad_token_id = 0 # unk self.model.config.bos_token_id = 1 self.model.config.eos_token_id = 2 if not load_8bit: self.model.half() # seems to fix bugs for some users. self.model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(self.model) def lora_generate(self, instruction, input): # evaluate temperature = 0 top_p = 0.75 top_k = 40 num_beams = 4 max_new_tokens = 128 stream_output = False prompt = self.prompter.generate_prompt(instruction, input) inputs = self.tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, ) generate_params = { "input_ids": input_ids, "generation_config": generation_config, "return_dict_in_generate": True, "output_scores": True, "max_new_tokens": max_new_tokens, } with torch.no_grad(): generation_output = self.model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = self.tokenizer.decode(s) return self.prompter.get_response(output), prompt # PARAMS load_8bit: bool = True base_model: str = "decapoda-research/llama-7b-hf" lora_weights: str = "./lora-alpaca" # "tloen/alpaca-lora-7b" prompt_template: str = "" server_name: str = "0.0.0.0" share_gradio: bool = False