rexoscare commited on
Commit
4730d80
1 Parent(s): 69bb3ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -33
app.py CHANGED
@@ -1,53 +1,58 @@
1
  import soundfile as sf
2
  import torch
3
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
4
- import argparse
5
- from glob import glob
6
- import torchaudio
7
- import subprocess
8
  import gradio as gr
 
 
9
 
10
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
11
 
12
- def get_filename(wav_file):
13
- filename_local = wav_file.split('/')[-1][:-4]
14
- filename_new = '/tmp/'+filename_local+'_16.wav'
15
-
 
 
16
 
17
- subprocess.call(["sox {} -r {} -b 16 -c 1 {}".format(wav_file, str(16000), filename_new)], shell=True)
18
- return filename_new
19
 
20
- def parse_transcription(wav_file):
21
- # load pretrained model
22
- processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
23
- model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
24
 
25
- # load audio
 
 
 
 
 
26
 
27
-
28
- wav_file = get_filename(wav_file.name)
29
- audio_input, sample_rate = sf.read(wav_file)
30
- #test_file = resampler(test_file[0])
31
 
32
- # pad input values and return pt tensor
33
- input_values = processor(audio_input, sampling_rate=16_000, return_tensors="pt").input_values
34
 
35
- # INFERENCE
36
- # retrieve logits & take argmax
37
- logits = model(input_values).logits
38
  predicted_ids = torch.argmax(logits, dim=-1)
39
-
40
- # transcribe
41
  transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
42
  return transcription
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  title = "Speech-to-Text (Hindi) using Vakyansh"
46
  description = "Upload a hindi audio clip, and let AI do the hard work of transcribing."
47
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.06678'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>"
48
- gr.Interface(
49
- parse_transcription,
50
- title=title,
51
- inputs=gr.inputs.Audio(label="Record Audio File", type="filepath", source = "microphone"),
52
- description=description, article = article, outputs = "text").launch(inline = False)
53
 
 
 
 
 
1
  import soundfile as sf
2
  import torch
3
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor,Wav2Vec2ProcessorWithLM
 
 
 
 
4
  import gradio as gr
5
+ import sox
6
+ import subprocess
7
 
 
8
 
9
+ def read_file_and_process(wav_file):
10
+ filename = wav_file.split('.')[0]
11
+ filename_16k = filename + "16k.wav"
12
+ resampler(wav_file, filename_16k)
13
+ speech, _ = sf.read(filename_16k)
14
+ inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
15
 
16
+ return inputs
 
17
 
 
 
 
 
18
 
19
+ def resampler(input_file_path, output_file_path):
20
+ command = (
21
+ f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
22
+ f"{output_file_path}"
23
+ )
24
+ subprocess.call(command, shell=True)
25
 
 
 
 
 
26
 
 
 
27
 
28
+ def parse_transcription(logits):
 
 
29
  predicted_ids = torch.argmax(logits, dim=-1)
 
 
30
  transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
31
  return transcription
32
 
33
+ def parse(wav_file):
34
+ input_values = read_file_and_process(wav_file)
35
+ with torch.no_grad():
36
+ logits = model(**input_values).logits
37
+
38
+
39
+
40
+ model_id = "Harveenchadha/vakyansh-wav2vec2-hindi-him-4200"
41
+ processor = Wav2Vec2Processor.from_pretrained(model_id)
42
+ processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained(model_id)
43
+ model = Wav2Vec2ForCTC.from_pretrained(model_id)
44
+
45
+
46
+ input_ = gr.Audio(source="microphone", type="filepath")
47
+ txtbox = gr.Textbox(
48
+ label="Hindi text output:",
49
+ lines=5
50
+ )
51
 
52
  title = "Speech-to-Text (Hindi) using Vakyansh"
53
  description = "Upload a hindi audio clip, and let AI do the hard work of transcribing."
54
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.06678'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>"
 
 
 
 
 
55
 
56
+ gr.Interface(parse, inputs = input_, outputs=txtbox, title=title, description=description, article = article,
57
+ streaming=True, interactive=True,
58
+ analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);