Perp-Neg / app.py
rezaarmand's picture
adding paper link and fixing cuda cpu problem
187b850
raw
history blame
4.31 kB
import torch
import gradio as gr
import torch
import os
from PIL import Image
from torch import autocast
from perpneg_diffusion.perpneg_stable_diffusion.pipeline_perpneg_stable_diffusion import PerpStableDiffusionPipeline
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
print(device)
# initialize stable diffusion model
pipe = PerpStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
# use_auth_token=True
).to(device)
def dummy(images, **kwargs):
return images, False
pipe.safety_checker = dummy
examples = [
[
"an armchair in the shape of an avocado | cushion in the armchair",
"1 | -0.3",
"145",
"7.5"
],
[
"an armchair in the shape of an avocado",
"1",
"145",
"7.5"
],
[
"a peacock, back view | a peacock, front view",
"1 | -3.5",
"30",
"7.5"
],
[
"a peacock, back view",
"1",
"30",
"7.5"
],
[
"A boy wearing sunglasses | a pair of sunglasses with white frame",
"1 | -0.35",
"200",
"11"
],
[
"A boy wearing sunglasses",
"1",
"200",
"11",
],
[
"a photo of an astronaut riding a horse | a jumping horse | a white horse",
"1 | -0.3 | -0.1",
"1988",
"10"
],
[
"a photo of an astronaut riding a horse | a jumping horse",
"1 | -0.3",
"1988",
"10"
],
[
"a photo of an astronaut riding a horse",
"1",
"1988",
"10"
],
]
def predict(prompt, weights, seed, scale=7.5, steps=50):
try:
with torch.no_grad():
has_cuda = torch.cuda.is_available()
with autocast('cpu' if not has_cuda else 'cuda'):
if has_cuda:
generator = torch.Generator('cuda').manual_seed(int(seed))
else:
generator = torch.Generator().manual_seed(int(seed))
image_perpneg = pipe(prompt, guidance_scale=float(scale), generator=generator,
num_inference_steps=steps, weights=weights)["images"][0]
return image_perpneg
except Exception as e:
print(e)
return None
app = gr.Blocks()
with app:
# gr.Markdown(
# "# **<p align='center'>AMLDS Video Tagging</p>**"
# )
gr.Markdown(
"# **<p align='center'>Perp-Neg: Iterative Editing and Robust View Generation.</p>**"
)
gr.Markdown(
"""
### **<p align='center'>Demo created by Huangjie Zheng and Reza Armandpour</p>**.
"""
)
with gr.Row():
with gr.Column():
# with gr.Tab(label="FUll prompt"):
gr.Markdown(
"### **Provide a list of prompts and their weights separated by | **"
)
prompt = gr.Textbox(label="List of prompts:", show_label=True)
weights = gr.Textbox(
label="List of weights:", show_label=True
)
seed = gr.Textbox(
label="Seed:", show_label=True
)
scale = gr.Textbox(
label="Guidance scale:", show_label=True
)
image_gen_btn = gr.Button(value="Generate")
with gr.Column():
img_output = gr.Image(
label="Generated Image",
show_label=True,
)
gr.Markdown("**Examples:**")
gr.Examples(
examples,
[prompt, weights, seed, scale],
[img_output],
fn=predict,
cache_examples=False,
)
image_gen_btn.click(
predict,
inputs=[prompt, weights, seed, scale],
outputs=[img_output],
)
gr.Markdown("""
\n This is the repository for using Perp-Neg sampling with Stable Diffusion model, as presented in [Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond.](https://Perp-Neg.github.i).
""")
gr.Markdown(
"""
\n Demo created by: Huangjie Zheng and Reza Armandpour</a>.
"""
)
app.launch()