|
import base64
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
|
|
import comfy.model_management
|
|
import folder_paths
|
|
import numpy as np
|
|
import torch
|
|
import trimesh
|
|
from PIL import Image
|
|
from trimesh.exchange import gltf
|
|
|
|
sys.path.append(os.path.dirname(__file__))
|
|
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
|
|
from spar3d.system import SPAR3D
|
|
from spar3d.utils import foreground_crop
|
|
|
|
SPAR3D_CATEGORY = "SPAR3D"
|
|
SPAR3D_MODEL_NAME = "stabilityai/spar3d"
|
|
|
|
|
|
class SPAR3DLoader:
|
|
CATEGORY = SPAR3D_CATEGORY
|
|
FUNCTION = "load"
|
|
RETURN_NAMES = ("spar3d_model",)
|
|
RETURN_TYPES = ("SPAR3D_MODEL",)
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"low_vram_mode": ("BOOLEAN", {"default": False}),
|
|
}
|
|
}
|
|
|
|
def load(self, low_vram_mode=False):
|
|
device = comfy.model_management.get_torch_device()
|
|
model = SPAR3D.from_pretrained(
|
|
SPAR3D_MODEL_NAME,
|
|
config_name="config.yaml",
|
|
weight_name="model.safetensors",
|
|
low_vram_mode=low_vram_mode,
|
|
)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
return (model,)
|
|
|
|
|
|
class SPAR3DPreview:
|
|
CATEGORY = SPAR3D_CATEGORY
|
|
FUNCTION = "preview"
|
|
OUTPUT_NODE = True
|
|
RETURN_TYPES = ()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"mesh": ("MESH",)}}
|
|
|
|
def preview(self, mesh):
|
|
glbs = []
|
|
for m in mesh:
|
|
scene = trimesh.Scene(m)
|
|
glb_data = gltf.export_glb(scene, include_normals=True)
|
|
glb_base64 = base64.b64encode(glb_data).decode("utf-8")
|
|
glbs.append(glb_base64)
|
|
return {"ui": {"glbs": glbs}}
|
|
|
|
|
|
class SPAR3DSampler:
|
|
CATEGORY = SPAR3D_CATEGORY
|
|
FUNCTION = "predict"
|
|
RETURN_NAMES = ("mesh", "pointcloud")
|
|
RETURN_TYPES = ("MESH", "POINTCLOUD")
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
remesh_choices = ["none"]
|
|
if TRIANGLE_REMESH_AVAILABLE:
|
|
remesh_choices.append("triangle")
|
|
if QUAD_REMESH_AVAILABLE:
|
|
remesh_choices.append("quad")
|
|
|
|
opt_dict = {
|
|
"mask": ("MASK",),
|
|
"pointcloud": ("POINTCLOUD",),
|
|
"target_type": (["none", "vertex", "face"],),
|
|
"target_count": (
|
|
"INT",
|
|
{"default": 1000, "min": 3, "max": 20000, "step": 1},
|
|
),
|
|
"guidance_scale": (
|
|
"FLOAT",
|
|
{"default": 3.0, "min": 1.0, "max": 5.0, "step": 0.05},
|
|
),
|
|
"seed": (
|
|
"INT",
|
|
{"default": 42, "min": 0, "max": 2**32 - 1, "step": 1},
|
|
),
|
|
}
|
|
if TRIANGLE_REMESH_AVAILABLE or QUAD_REMESH_AVAILABLE:
|
|
opt_dict["remesh"] = (remesh_choices,)
|
|
|
|
return {
|
|
"required": {
|
|
"model": ("SPAR3D_MODEL",),
|
|
"image": ("IMAGE",),
|
|
"foreground_ratio": (
|
|
"FLOAT",
|
|
{"default": 1.3, "min": 1.0, "max": 2.0, "step": 0.01},
|
|
),
|
|
"texture_resolution": (
|
|
"INT",
|
|
{"default": 1024, "min": 512, "max": 2048, "step": 256},
|
|
),
|
|
},
|
|
"optional": opt_dict,
|
|
}
|
|
|
|
def predict(
|
|
s,
|
|
model,
|
|
image,
|
|
mask,
|
|
foreground_ratio,
|
|
texture_resolution,
|
|
pointcloud=None,
|
|
remesh="none",
|
|
target_type="none",
|
|
target_count=1000,
|
|
guidance_scale=3.0,
|
|
seed=42,
|
|
):
|
|
if image.shape[0] != 1:
|
|
raise ValueError("Only one image can be processed at a time")
|
|
|
|
vertex_count = (
|
|
-1
|
|
if target_type == "none"
|
|
else (target_count // 2 if target_type == "face" else target_count)
|
|
)
|
|
|
|
pil_image = Image.fromarray(
|
|
torch.clamp(torch.round(255.0 * image[0]), 0, 255)
|
|
.type(torch.uint8)
|
|
.cpu()
|
|
.numpy()
|
|
)
|
|
|
|
if mask is not None:
|
|
print("Using Mask")
|
|
mask_np = np.clip(255.0 * mask[0].detach().cpu().numpy(), 0, 255).astype(
|
|
np.uint8
|
|
)
|
|
mask_pil = Image.fromarray(mask_np, mode="L")
|
|
pil_image.putalpha(mask_pil)
|
|
else:
|
|
if image.shape[3] != 4:
|
|
print("No mask or alpha channel detected, Converting to RGBA")
|
|
pil_image = pil_image.convert("RGBA")
|
|
|
|
pil_image = foreground_crop(pil_image, foreground_ratio)
|
|
|
|
model.cfg.guidance_scale = guidance_scale
|
|
random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
print(remesh)
|
|
with torch.no_grad():
|
|
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
|
if not TRIANGLE_REMESH_AVAILABLE and remesh == "triangle":
|
|
raise ImportError(
|
|
"Triangle remeshing requires gpytoolbox to be installed"
|
|
)
|
|
if not QUAD_REMESH_AVAILABLE and remesh == "quad":
|
|
raise ImportError("Quad remeshing requires pynim to be installed")
|
|
mesh, glob_dict = model.run_image(
|
|
pil_image,
|
|
bake_resolution=texture_resolution,
|
|
pointcloud=pointcloud,
|
|
remesh=remesh,
|
|
vertex_count=vertex_count,
|
|
)
|
|
|
|
if mesh.vertices.shape[0] == 0:
|
|
raise ValueError("No subject detected in the image")
|
|
|
|
return (
|
|
[mesh],
|
|
glob_dict["pointcloud"].view(-1).detach().cpu().numpy().tolist(),
|
|
)
|
|
|
|
|
|
class SPAR3DSave:
|
|
CATEGORY = SPAR3D_CATEGORY
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
RETURN_TYPES = ()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"mesh": ("MESH",),
|
|
"filename_prefix": ("STRING", {"default": "SPAR3D"}),
|
|
}
|
|
}
|
|
|
|
def __init__(self):
|
|
self.type = "output"
|
|
|
|
def save(self, mesh, filename_prefix):
|
|
output_dir = folder_paths.get_output_directory()
|
|
glbs = []
|
|
for idx, m in enumerate(mesh):
|
|
scene = trimesh.Scene(m)
|
|
glb_data = gltf.export_glb(scene, include_normals=True)
|
|
logging.info(f"Generated GLB model with {len(glb_data)} bytes")
|
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = (
|
|
folder_paths.get_save_image_path(filename_prefix, output_dir)
|
|
)
|
|
filename = filename.replace("%batch_num%", str(idx))
|
|
out_path = os.path.join(full_output_folder, f"{filename}_{counter:05}_.glb")
|
|
with open(out_path, "wb") as f:
|
|
f.write(glb_data)
|
|
glbs.append(base64.b64encode(glb_data).decode("utf-8"))
|
|
return {"ui": {"glbs": glbs}}
|
|
|
|
|
|
class SPAR3DPointCloudLoader:
|
|
CATEGORY = SPAR3D_CATEGORY
|
|
FUNCTION = "load_pointcloud"
|
|
RETURN_TYPES = ("POINTCLOUD",)
|
|
RETURN_NAMES = ("pointcloud",)
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"file": ("STRING", {"default": None}),
|
|
}
|
|
}
|
|
|
|
def load_pointcloud(self, file):
|
|
if file is None or file == "":
|
|
return (None,)
|
|
|
|
mesh = trimesh.load(file)
|
|
|
|
|
|
vertices = mesh.vertices
|
|
|
|
|
|
if mesh.visual.vertex_colors is not None:
|
|
colors = (
|
|
mesh.visual.vertex_colors[:, :3] / 255.0
|
|
)
|
|
else:
|
|
colors = np.ones((len(vertices), 3))
|
|
|
|
|
|
point_cloud = []
|
|
for vertex, color in zip(vertices, colors):
|
|
point_cloud.extend(
|
|
[
|
|
float(vertex[0]),
|
|
float(vertex[1]),
|
|
float(vertex[2]),
|
|
float(color[0]),
|
|
float(color[1]),
|
|
float(color[2]),
|
|
]
|
|
)
|
|
|
|
return (point_cloud,)
|
|
|
|
|
|
class SPAR3DPointCloudSaver:
|
|
CATEGORY = SPAR3D_CATEGORY
|
|
FUNCTION = "save_pointcloud"
|
|
OUTPUT_NODE = True
|
|
RETURN_TYPES = ()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"pointcloud": ("POINTCLOUD",),
|
|
"filename_prefix": ("STRING", {"default": "SPAR3D"}),
|
|
}
|
|
}
|
|
|
|
def save_pointcloud(self, pointcloud, filename_prefix):
|
|
if pointcloud is None:
|
|
return {"ui": {"text": "No point cloud data to save"}}
|
|
|
|
|
|
points = np.array(pointcloud).reshape(-1, 6)
|
|
|
|
|
|
vertex_array = np.zeros(
|
|
len(points),
|
|
dtype=[
|
|
("x", "f4"),
|
|
("y", "f4"),
|
|
("z", "f4"),
|
|
("red", "u1"),
|
|
("green", "u1"),
|
|
("blue", "u1"),
|
|
],
|
|
)
|
|
|
|
|
|
vertex_array["x"] = points[:, 0]
|
|
vertex_array["y"] = points[:, 1]
|
|
vertex_array["z"] = points[:, 2]
|
|
|
|
vertex_array["red"] = (points[:, 3] * 255).astype(np.uint8)
|
|
vertex_array["green"] = (points[:, 4] * 255).astype(np.uint8)
|
|
vertex_array["blue"] = (points[:, 5] * 255).astype(np.uint8)
|
|
|
|
|
|
ply_data = trimesh.PointCloud(
|
|
vertices=points[:, :3], colors=points[:, 3:] * 255
|
|
)
|
|
|
|
|
|
output_dir = folder_paths.get_output_directory()
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = (
|
|
folder_paths.get_save_image_path(filename_prefix, output_dir)
|
|
)
|
|
out_path = os.path.join(full_output_folder, f"{filename}_{counter:05}.ply")
|
|
|
|
ply_data.export(out_path)
|
|
|
|
return {"ui": {"text": f"Saved point cloud to {out_path}"}}
|
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"SPAR3DLoader": "SPAR3D Loader",
|
|
"SPAR3DPreview": "SPAR3D Preview",
|
|
"SPAR3DSampler": "SPAR3D Sampler",
|
|
"SPAR3DSave": "SPAR3D Save",
|
|
"SPAR3DPointCloudLoader": "SPAR3D Point Cloud Loader",
|
|
"SPAR3DPointCloudSaver": "SPAR3D Point Cloud Saver",
|
|
}
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"SPAR3DLoader": SPAR3DLoader,
|
|
"SPAR3DPreview": SPAR3DPreview,
|
|
"SPAR3DSampler": SPAR3DSampler,
|
|
"SPAR3DSave": SPAR3DSave,
|
|
"SPAR3DPointCloudLoader": SPAR3DPointCloudLoader,
|
|
"SPAR3DPointCloudSaver": SPAR3DPointCloudSaver,
|
|
}
|
|
|
|
WEB_DIRECTORY = "./comfyui"
|
|
|
|
__all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS", "WEB_DIRECTORY"]
|
|
|