Spaces:
Sleeping
Sleeping
File size: 13,984 Bytes
71f183c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
from torch import nn
from .. import losses
import ignite.distributed as idist
import torch_optimizer
from tqdm import tqdm
import matplotlib.pyplot as plt
from torch.nn import functional as F
import os
import shutil
from modelguidedattacks.cls_models.registry import MMPretrainVisualTransformerWrapper
from modelguidedattacks.data.imagenet_metadata import imgnet_idx_to_name
class Unguided(nn.Module):
def __init__(self, model: nn.Module, config, optimizer=torch.optim.AdamW, seed=0, iterations=1000,
loss_fn=losses.CVXProjLoss, lr=1e-3,
binary_search_steps=1, topk_loss_coef_upper=10.,
topk_loss_coef_lower=0.) -> None:
super().__init__()
self.guided = False
self.model = model
self.seed = seed
self.iterations = iterations
self.loss = loss_fn()
self.optimizer = optimizer
self.lr = lr
self.binary_search_steps = binary_search_steps
self.topk_loss_coef_upper = topk_loss_coef_upper
self.topk_loss_coef_lower = topk_loss_coef_lower
self.config = config
def surject_perturbation(self, x, max_norm=5.):
x_shape = x.shape
x = x.flatten(1)
x_norm = x.norm(dim=-1)
x_unit = x / x_norm[:, None]
x_norm_outside = x_norm > max_norm
x_norm_outside = x_norm_outside.expand_as(x)
x = torch.where(x_norm_outside, x_unit*max_norm, x)
return x.view(x_shape)
@torch.enable_grad()
def attack(self, x, attack_targets, gt_labels, topk_coefs):
"""
For a given set of topk coefficients, this function computes
best energy attack in the given number of iterations and configuration
x: [B, C, H, W] [0-1 for colors]
attack_targets: [B, K] (long)
gt_labels: [B] (long)
topk_coefs: [B] (floats)
"""
topk_coefs = topk_coefs.clone()
K = attack_targets.shape[-1]
x_perturbation = nn.Parameter(torch.randn(x.shape,
device=x.device)*2e-3)
with torch.no_grad():
prediction_logits_0, prediction_feats_0 \
= self.model(x, return_features=True)
best_perturbations = torch.zeros_like(x) # [B, 3, H, W]
has_successful_attack = torch.zeros(x.shape[0], dtype=torch.long, device=x.device) # [B]
best_energy = torch.full((x.shape[0],), float('inf'), device=x.device) # [B]
pbar = tqdm(range(self.iterations))
for i in pbar:
if i == self.config.opt_warmup_its:
# Reset optimizer state
optimizer = self.optimizer([x_perturbation], lr=self.lr)
x_perturbed = x + x_perturbation#self.surject_perturbation(x_perturbation)
prediction_logits, prediction_feats = self.model(x_perturbed, return_features=True)
pred_classes = prediction_logits.argsort(dim=-1, descending=True) # [B, C]
attack_successful = (pred_classes[:, :K] == attack_targets).all(dim=-1) # [B]
attack_energy = x_perturbation.flatten(1).norm(dim=-1) # [B]
attack_improved = attack_successful & (attack_energy <= best_energy)
best_perturbations[attack_improved] = x_perturbation[attack_improved]
has_successful_attack[attack_improved] = True
best_energy[attack_improved] = attack_energy[attack_improved]
loss = self.loss(logits_pred=prediction_logits,
feats_pred=prediction_feats,
feats_pred_0=prediction_feats_0,
attack_targets=attack_targets,
model=self.model, **precomputed_state)
loss = loss * topk_coefs
loss = loss.sum()
pbar.set_description(f"Loss: {loss.item():.3f}")
loss = loss + x_perturbation.flatten(1).square().sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# If we were successfull let's start taking the norm down
topk_coefs[attack_improved] *= 0.75
# Project perturbation to be within image limits
with torch.no_grad():
x_perturbed = x + x_perturbation
x_perturbed = x_perturbed.clamp_(min=0., max=1.)
x_perturbation.data = x_perturbed - x
x_perturbed_best = x + best_perturbations
prediction_logits, prediction_feats = self.model(x_perturbed_best, return_features=True)
if self.config.dump_plots:
if os.path.isdir(self.config.plot_out):
shutil.rmtree(self.config.plot_out)
if has_successful_attack.any():
def dump_random_map():
os.makedirs(self.config.plot_out, exist_ok=True)
# selected_idx = best_energy.argmin()
successful_idxs = has_successful_attack.nonzero()[:, 0]
if self.config.plot_idx == "find":
selected_idx = successful_idxs[torch.randperm(len(successful_idxs))[0]]
# selected_idx = best_energy.argmin()
else:
selected_idx = int(self.config.plot_idx)
print ("Selected idx", selected_idx)
top_classes = prediction_logits_0[selected_idx].argsort(dim=-1, descending=True)
attack_targets_selected = attack_targets[selected_idx]
def imgnet_names(idxs):
return [imgnet_idx_to_name[int(idx)].split(",")[0] for idx in idxs]
top_class_names = imgnet_names(top_classes)[:K]
attack_targets_selected_names = imgnet_names(attack_targets_selected)
def plot_attn_map(attn_map):
attn_map = attn_map[0].mean(dim=0)[1:] # [196] get class tokens
attn_map = attn_map.view(14, 14)
attn_map = F.interpolate(
attn_map[None, None],
x.shape[-2:],
mode="bilinear"
).view(x.shape[-2:])
plt.imshow(attn_map.detach().cpu(), alpha=0.5)
plt.figure()
plt.imshow(x[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
plt.axis("off")
plt.savefig(f"{self.config.plot_out}/clean_image.png", bbox_inches="tight", pad_inches=0)
plt.figure()
plt.imshow(x_perturbed_best[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
plt.axis("off")
plt.savefig(f"{self.config.plot_out}/perturbed_image.png", bbox_inches="tight", pad_inches=0)
plt.figure()
plt.imshow(best_perturbations[selected_idx].mean(dim=0).abs().detach().cpu(), cmap="hot")
plt.colorbar()
plt.savefig(f"{self.config.plot_out}/perturbation.png", bbox_inches="tight")
if isinstance(self.model, MMPretrainVisualTransformerWrapper):
attn_maps_clean = self.model.get_attention_maps(x)[-1][selected_idx]
attn_maps_attacked = self.model.get_attention_maps(x_perturbed_best)[-1][selected_idx]
plt.figure()
plt.imshow(x[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
plot_attn_map(attn_maps_clean)
plt.axis("off")
plt.savefig(f"{self.config.plot_out}/clean_map.png", bbox_inches="tight", pad_inches=0)
plt.figure()
plt.imshow(x[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
plot_attn_map(attn_maps_attacked)
plt.axis("off")
plt.savefig(f"{self.config.plot_out}/attacked_map.png", bbox_inches="tight", pad_inches=0)
with open(f'{self.config.plot_out}/clean_classes_names.txt', 'w') as f:
f.write(", ".join(top_class_names))
with open(f'{self.config.plot_out}/attack_targets_names.txt', 'w') as f:
f.write(", ".join(attack_targets_selected_names))
with open(f'{self.config.plot_out}/clean_classes_names.txt', 'w') as f:
f.write(", ".join(top_class_names))
with open(f'{self.config.plot_out}/selected_idx.txt', 'w') as f:
if isinstance(selected_idx, torch.Tensor):
selected_idx = selected_idx.item()
f.write(str(selected_idx))
with open(f'{self.config.plot_out}/energy.txt', 'w') as f:
f.write(str(best_energy[selected_idx].item()))
C = prediction_logits_0.shape[-1]
class_idxs = torch.arange(C) + 1
clean_probs = prediction_logits_0[selected_idx].detach().cpu().softmax(dim=-1)
attacked_probs = prediction_logits[selected_idx].detach().cpu().softmax(dim=-1)
def label_classes(bars):
adjusted_heights = {}
for i, cls_idx in enumerate(attack_targets_selected.tolist()):
bar = bars[cls_idx]
height = bar.get_height()
ann_x = bar.get_x() + bar.get_width()
rotation = 90
font_size = 10
max_neighboring_height = -1
for other_cls_idx in attack_targets_selected.tolist():
if abs(cls_idx - other_cls_idx) <= 40 and cls_idx != other_cls_idx:
if other_cls_idx in adjusted_heights and adjusted_heights[other_cls_idx] > max_neighboring_height:
max_neighboring_height = adjusted_heights[other_cls_idx]
if max_neighboring_height > 0:
height = max_neighboring_height + 0.05
adjusted_heights[cls_idx] = height
plt.text(ann_x, height, f"[{i}]", rotation=rotation,
ha='center', va='bottom', fontsize=font_size, color='red')#.get_bbox_patch().get_height()
plt.figure()
bars_clean = plt.bar(class_idxs, clean_probs, width=4)
plt.ylim(0,1)
label_classes(bars_clean)
plt.savefig(f"{self.config.plot_out}/clean_probs.png", bbox_inches="tight", pad_inches=0)
plt.figure()
bars_attacked = plt.bar(class_idxs, attacked_probs, width=4)
plt.ylim(0,1)
label_classes(bars_attacked)
plt.savefig(f"{self.config.plot_out}/attacked_probs.png", bbox_inches="tight", pad_inches=0)
print ("Idx", selected_idx)
print (best_energy[selected_idx])
print ("Finished plotting")
dump_random_map()
import sys
sys.exit(1)
print ("Dumped attention map")
return prediction_logits, best_perturbations, best_energy
def forward(self, x, attack_targets, gt_labels):
"""
This function is in charge of performing a binary search through
topk loss coefficients and running attacks on each.
"""
B = x.shape[0]
device = x.device
topk_coefs_lower = torch.full((B,), fill_value=self.topk_loss_coef_lower,
device=device, dtype=torch.float)
topk_coefs_upper = torch.full((B,), fill_value=self.topk_loss_coef_upper,
device=device, dtype=torch.float)
best_perturbations = torch.zeros_like(x) # [B, 3, H, W]
best_energy = torch.full((B,), float('inf'), device=device) # [B]
best_prediction_logits = None
for search_step_i in range(self.binary_search_steps):
if x.device.index is None or x.device.index == 0:
print ("Running binary search step", search_step_i + 1)
current_topk_coefs = (topk_coefs_lower + topk_coefs_upper) / 2
current_logits, current_perturbations, current_energy = \
self.attack(x, attack_targets, gt_labels, current_topk_coefs)
current_attack_suceeded = ~torch.isinf(current_energy)
update_mask = current_energy < best_energy
best_perturbations[update_mask] = current_perturbations[update_mask]
best_energy[update_mask] = current_energy[update_mask]
if best_prediction_logits is None:
best_prediction_logits = current_logits.clone()
else:
best_prediction_logits[update_mask] = current_logits[update_mask]
# If we fail to attack, we must increase our topk coef
topk_coefs_lower[~current_attack_suceeded] = current_topk_coefs[~current_attack_suceeded]
# If we succeed, we must lower to seek a more frugal attack
topk_coefs_upper[current_attack_suceeded] = current_topk_coefs[current_attack_suceeded]
idist.barrier()
return best_prediction_logits, best_perturbations |