Spaces:
Sleeping
Sleeping
File size: 6,420 Bytes
71f183c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import qpth
from qpth.solvers.pdipm import batch as pdipm_b
from qpth.solvers.pdipm.batch import *
def reduce_stats(z):
return z[~z.isnan()].median()
def forward(Q, p, G, h, A, b, Q_LU, S_LU, R, eps=1e-12, verbose=0, notImprovedLim=3,
maxIter=20, solver=KKTSolvers.LU_PARTIAL):
"""
Q_LU, S_LU, R = pre_factor_kkt(Q, G, A)
"""
nineq, nz, neq, nBatch = get_sizes(G, A)
# Find initial values
if solver == KKTSolvers.LU_FULL:
D = torch.eye(nineq).repeat(nBatch, 1, 1).type_as(Q)
x, s, z, y = factor_solve_kkt(
Q, D, G, A, p,
torch.zeros(nBatch, nineq).type_as(Q),
-h, -b if b is not None else None)
elif solver == KKTSolvers.LU_PARTIAL:
d = torch.ones(nBatch, nineq).type_as(Q)
factor_kkt(S_LU, R, d)
x, s, z, y = solve_kkt(
Q_LU, d, G, A, S_LU,
p, torch.zeros(nBatch, nineq).type_as(Q),
-h, -b if neq > 0 else None)
elif solver == KKTSolvers.IR_UNOPT:
D = torch.eye(nineq).repeat(nBatch, 1, 1).type_as(Q)
x, s, z, y = solve_kkt_ir(
Q, D, G, A, p,
torch.zeros(nBatch, nineq).type_as(Q),
-h, -b if b is not None else None)
else:
assert False
# Make all of the slack variables >= 1.
M = torch.min(s, 1)[0]
M = M.view(M.size(0), 1).repeat(1, nineq)
I = M < 0
s[I] -= M[I] - 1
# Make all of the inequality dual variables >= 1.
M = torch.min(z, 1)[0]
M = M.view(M.size(0), 1).repeat(1, nineq)
I = M < 0
z[I] -= M[I] - 1
best = {'resids': None, 'x': None, 'z': None, 's': None, 'y': None}
nNotImproved = 0
for i in range(maxIter):
# affine scaling direction
rx = (torch.bmm(y.unsqueeze(1), A).squeeze(1) if neq > 0 else 0.) + \
torch.bmm(z.unsqueeze(1), G).squeeze(1) + \
torch.bmm(x.unsqueeze(1), Q.transpose(1, 2)).squeeze(1) + \
p
rs = z
rz = torch.bmm(x.unsqueeze(1), G.transpose(1, 2)).squeeze(1) + s - h
ry = torch.bmm(x.unsqueeze(1), A.transpose(
1, 2)).squeeze(1) - b if neq > 0 else 0.0
mu = torch.abs((s * z).sum(1).squeeze() / nineq)
z_resid = torch.norm(rz, 2, 1).squeeze()
y_resid = torch.norm(ry, 2, 1).squeeze() if neq > 0 else 0
pri_resid = y_resid + z_resid
dual_resid = torch.norm(rx, 2, 1).squeeze()
resids = pri_resid + dual_resid + nineq * mu
d = z / s
try:
factor_kkt(S_LU, R, d)
except:
return best['x'], best['y'], best['z'], best['s']
if verbose == 1:
print('iter: {}, pri_resid: {:.5e}, dual_resid: {:.5e}, mu: {:.5e}'.format(
i, reduce_stats(pri_resid), reduce_stats(dual_resid), reduce_stats(mu)))
if best['resids'] is None:
best['resids'] = resids
best['x'] = x.clone()
best['z'] = z.clone()
best['s'] = s.clone()
best['y'] = y.clone() if y is not None else None
nNotImproved = 0
else:
I = resids < best['resids']
if I.sum() > 0:
nNotImproved = 0
else:
nNotImproved += 1
I_nz = I.repeat(nz, 1).t()
I_nineq = I.repeat(nineq, 1).t()
best['resids'][I] = resids[I]
best['x'][I_nz] = x[I_nz]
best['z'][I_nineq] = z[I_nineq]
best['s'][I_nineq] = s[I_nineq]
if neq > 0:
I_neq = I.repeat(neq, 1).t()
best['y'][I_neq] = y[I_neq]
if nNotImproved == notImprovedLim or reduce_stats(pri_resid) < eps or mu.min() > 1e32:
if best['resids'].max() > 1. and verbose >= 0:
print(INACC_ERR)
return best['x'], best['y'], best['z'], best['s']
if solver == KKTSolvers.LU_FULL:
D = bdiag(d)
dx_aff, ds_aff, dz_aff, dy_aff = factor_solve_kkt(
Q, D, G, A, rx, rs, rz, ry)
elif solver == KKTSolvers.LU_PARTIAL:
dx_aff, ds_aff, dz_aff, dy_aff = solve_kkt(
Q_LU, d, G, A, S_LU, rx, rs, rz, ry)
elif solver == KKTSolvers.IR_UNOPT:
D = bdiag(d)
dx_aff, ds_aff, dz_aff, dy_aff = solve_kkt_ir(
Q, D, G, A, rx, rs, rz, ry)
else:
assert False
# compute centering directions
alpha = torch.min(torch.min(get_step(z, dz_aff),
get_step(s, ds_aff)),
torch.ones(nBatch).type_as(Q))
alpha_nineq = alpha.repeat(nineq, 1).t()
t1 = s + alpha_nineq * ds_aff
t2 = z + alpha_nineq * dz_aff
t3 = torch.sum(t1 * t2, 1).squeeze()
t4 = torch.sum(s * z, 1).squeeze()
sig = (t3 / t4)**3
rx = torch.zeros(nBatch, nz).type_as(Q)
rs = ((-mu * sig).repeat(nineq, 1).t() + ds_aff * dz_aff) / s
rz = torch.zeros(nBatch, nineq).type_as(Q)
ry = torch.zeros(nBatch, neq).type_as(Q) if neq > 0 else torch.Tensor()
if solver == KKTSolvers.LU_FULL:
D = bdiag(d)
dx_cor, ds_cor, dz_cor, dy_cor = factor_solve_kkt(
Q, D, G, A, rx, rs, rz, ry)
elif solver == KKTSolvers.LU_PARTIAL:
dx_cor, ds_cor, dz_cor, dy_cor = solve_kkt(
Q_LU, d, G, A, S_LU, rx, rs, rz, ry)
elif solver == KKTSolvers.IR_UNOPT:
D = bdiag(d)
dx_cor, ds_cor, dz_cor, dy_cor = solve_kkt_ir(
Q, D, G, A, rx, rs, rz, ry)
else:
assert False
dx = dx_aff + dx_cor
ds = ds_aff + ds_cor
dz = dz_aff + dz_cor
dy = dy_aff + dy_cor if neq > 0 else None
alpha = torch.min(0.999 * torch.min(get_step(z, dz),
get_step(s, ds)),
torch.ones(nBatch).type_as(Q))
alpha_nineq = alpha.repeat(nineq, 1).t()
alpha_neq = alpha.repeat(neq, 1).t() if neq > 0 else None
alpha_nz = alpha.repeat(nz, 1).t()
x += alpha_nz * dx
s += alpha_nineq * ds
z += alpha_nineq * dz
y = y + alpha_neq * dy if neq > 0 else None
if best['resids'].max() > 1. and verbose >= 0:
print(INACC_ERR)
return best['x'], best['y'], best['z'], best['s']
pdipm_b.forward = forward |