Spaces:
Sleeping
Sleeping
import torch | |
import types | |
import timm | |
import requests | |
import random | |
import yaml | |
import gradio as gr | |
from PIL import Image | |
from timm import create_model | |
from torchvision import transforms | |
from timm.data import resolve_data_config | |
from modelguidedattacks.guides.unguided import Unguided | |
from timm.data.transforms_factory import create_transform | |
from modelguidedattacks.cls_models.registry import TimmPretrainModelWrapper | |
# Download human-readable labels for ImageNet. | |
IMAGENET_LABELS_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt" | |
LABELS = requests.get(IMAGENET_LABELS_URL).text.strip().split("\n") | |
SORTED_LABELS = sorted(LABELS.copy(), key=lambda s: s.lower()) | |
def get_timm_model(name): | |
"""Retrieves model from timm library by name with weights loaded. | |
""" | |
model = create_model(name,pretrained="true") | |
transform = create_transform(**resolve_data_config({}, model=model)) | |
model = model.eval() | |
return model, transform | |
def create_attacker(model, transform, iterations): | |
""" Instantiates an QuadAttack Model. | |
""" | |
# config_dict = {"cvx_proj_margin" : 0.2, | |
# "opt_warmup_its": 5} | |
with open("base_config.yaml") as f: | |
config_dict = yaml.safe_load(f) | |
config = types.SimpleNamespace(**config_dict) | |
attacker = Unguided(TimmPretrainModelWrapper(model, transform,"", "", ""), config, iterations=iterations, | |
lr=0.002, topk_loss_coef_upper=10) | |
return attacker | |
def predict_topk_accuracies(img, k, iters, model_name, desired_labels, button=None, progress=gr.Progress(track_tqdm=True)): | |
""" Predict the top K results using base model and attacker model. | |
""" | |
label_inds = list(range(0,1000)) #label indices | |
# convert user desired labels to desired inds | |
desired_inds = [LABELS.index(name) for name in desired_labels] | |
# remove selected before randomly sampling the rest | |
for ind in desired_inds: | |
label_inds.remove(ind) | |
# fill up user selections to top k results | |
desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds)) | |
tensorized_desired_inds = torch.tensor(desired_inds).unsqueeze(0) #[B,K] | |
model, transform = get_timm_model(model_name) | |
# Define a transformation to convert PIL image to a tensor | |
normalization = transforms.Compose([ | |
transform.transforms[-1] # Converts to a PyTorch tensor | |
]) | |
preprocess = transforms.Compose( | |
transform.transforms[:-1] # Converts to a PyTorch tensor | |
) | |
attacker = create_attacker(model, normalization, iters) | |
img = img.convert('RGB') | |
orig_img = img.copy() | |
orig_img = preprocess(orig_img) | |
orig_img = orig_img.unsqueeze(0) | |
img = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = model(img) | |
attack_outputs, attack_img = attacker(orig_img, tensorized_desired_inds, None) | |
probabilities = torch.nn.functional.softmax(outputs[0], dim=0) | |
attacker_probs = torch.nn.functional.softmax(attack_outputs[0], dim=0) | |
values, indices = torch.topk(probabilities, k) | |
attack_vals, attack_inds = torch.topk(attacker_probs, k) | |
attack_img_out = orig_img + attack_img #B C H W | |
# Convert the PyTorch tensor to a NumPy array | |
attack_img_out = attack_img_out.squeeze(0) # C H W | |
attack_img_out = attack_img_out.permute(1, 2, 0).numpy() # H W C | |
orig_img = orig_img.squeeze(0) | |
orig_img = orig_img.permute(1, 2, 0).numpy() | |
attack_img = attack_img.squeeze(0) | |
attack_img = attack_img.permute(1, 2, 0).numpy() | |
# Convert the NumPy array to a PIL image | |
attack_img_out = Image.fromarray((attack_img_out * 255).astype('uint8')) | |
orig_img = Image.fromarray((orig_img * 255).astype('uint8')) | |
attack_img = Image.fromarray((attack_img * 255).astype('uint8')) | |
return (orig_img, attack_img_out, attack_img,{LABELS[i]: v.item() for i, v in zip(indices, values)}, {LABELS[i]: v.item() for i, v in zip(attack_inds, attack_vals)}) | |
def random_fill_classes(desired_labels, k): | |
label_inds = list(range(0,1000)) #label indices | |
# convert user desired labels to desired inds | |
if len(desired_labels) > k: | |
desired_labels = desired_labels[:k] | |
desired_inds = [LABELS.index(name) for name in desired_labels] | |
# remove selected before randomly sampling the rest | |
for ind in desired_inds: | |
label_inds.remove(ind) | |
# fill up user selections to top k results | |
desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds)) | |
return [LABELS[ind] for ind in desired_inds] | |
input_img = gr.Image(type='pil') | |
top_k_slider = gr.Slider(2, 20, value=10, step=1, label="Top K predictions", info="Choose between 2 and 20") | |
iteration_slider = gr.Slider(30, 1000, value=60, step=1, label="QuadAttack Iterations", info="Choose how many iterations to optimize using QuadAttack! (Usually <= 60 is enough)") | |
model_choice_list = gr.Dropdown( | |
timm.list_models(), value="vit_base_patch16_224", label="timm model name", info="Currently only supporting timm models! See code for models used in paper." | |
) | |
desired_labels = gr.Dropdown( | |
SORTED_LABELS, max_choices=20,filterable=True, multiselect=True, label="Desired Labels for QuadAttack", info="Select classes you wish to output from an attack. \ | |
Classes will be ranked in order listed and randomly filled up to \ | |
K if < K options are selected." | |
) | |
button = gr.Button("Randomly fill Top-K attack classes.") | |
desc = r'<div align="center">Authors: Thomas Paniagua, Ryan Grainger, Tianfu Wu <p><a href="https://arxiv.org/abs/2312.11510">Paper</a><br><a href="https://github.com/thomaspaniagua/quadattack">Code</a></p> </div>' | |
with gr.Interface(predict_topk_accuracies, | |
inputs=[input_img, | |
top_k_slider, | |
iteration_slider, | |
model_choice_list, | |
desired_labels, | |
button], | |
outputs=[ | |
gr.Image(type='pil', label="Input Image"), | |
gr.Image(type='pil', label="Perturbed Image"), | |
gr.Image(type='pil', label="Added Noise"), | |
gr.Label(label="Original Top K"), | |
gr.Label(label="QuadAttack Top K"), | |
# gr.Image(type='pil', label="Perturbed Image") | |
], | |
title='QuadAttack!', | |
description= desc, | |
cache_examples=False, | |
allow_flagging="never", | |
thumbnail= "quadattack_pipeline.pdf", | |
examples = [["image_examples/RV.jpeg", 5, 30, "vit_base_patch16_224", None, None | |
# ["lemon", "plastic_bag", "hay", "tripod", "bell_cote, bell_cot"] | |
], | |
# ["image_examples/biker.jpeg", 10, 60, "swinv2_cr_base_224", None, None | |
# ["hog, pig, grunter, squealer, Sus_scrofa", | |
# "lesser_panda, red_panda, panda, bear_cat, cat_bear, Ailurus_fulgens", | |
# "caldron, cauldron", "dowitcher", "water_tower", "quill, quill_pen", | |
# "balance_beam, beam", "unicycle, monocycle", "pencil_sharpener", | |
# "puffer, pufferfish, blowfish, globefish" | |
# ] | |
# ], | |
["image_examples/mower.jpeg", 15, 100,"wide_resnet101_2", None , None | |
# ["washbasin, handbasin, washbowl, lavabo, wash-hand_basin", | |
# "cucumber, cuke", "bolete", "oboe, hautboy, hautboi", "crane", | |
# "wolf_spider, hunting_spider", "Norfolk_terrier", "nail", "sidewinder, horned_rattlesnake, Crotalus_cerastes", | |
# "cannon", "beaker", "Shetland_sheepdog, Shetland_sheep_dog, Shetland", | |
# "monitor", "restaurant, eating_house, eating_place, eatery", "electric_fan, blower" | |
# ] | |
], | |
# ["image_examples/dog.jpeg", 20, 150, "xcit_small_12_p8_224", None, None | |
# ["church, church_building", "axolotl, mud_puppy, Ambystoma_mexicanum", | |
# "Scotch_terrier, Scottish_terrier, Scottie", "black-footed_ferret, ferret, Mustela_nigripes", | |
# "lab_coat, laboratory_coat", "gyromitra", "grasshopper, hopper", "snail", "tabby, tabby_cat", | |
# "bell_cote, bell_cot", "Indian_cobra, Naja_naja", "robin, American_robin, Turdus_migratorius", | |
# "tiger_cat", "book_jacket, dust_cover, dust_jacket, dust_wrapper", "loudspeaker, speaker, speaker_unit, loudspeaker_system, speaker_system", | |
# "washbasin, handbasin, washbowl, lavabo, wash-hand_basin", "electric_guitar", "armadillo", "ski_mask", | |
# "convertible" | |
# ] | |
# ], | |
["image_examples/fish.jpeg", 10, 100, "pvt_v2_b0", None, None | |
# ["ground_beetle, carabid_beetle", "sunscreen, sunblock, sun_blocker", "brass, memorial_tablet, plaque", "Irish_terrier", "head_cabbage", "bathtub, bathing_tub, bath, tub", | |
# "centipede", "squirrel_monkey, Saimiri_sciureus", "Chihuahua", "hourglass" | |
# ] | |
] | |
] | |
).queue() as app: | |
#turn off clear button as it erases globals | |
for block in app.blocks: | |
if isinstance(app.blocks[block],gr.Button): | |
if app.blocks[block].value == "Clear": | |
app.blocks[block].visible=False | |
button.click(random_fill_classes, inputs=[desired_labels,top_k_slider], outputs=desired_labels) | |
if __name__ == "__main__": | |
app.launch() |