import torch import types import timm import requests import random import yaml import gradio as gr from PIL import Image from timm import create_model from torchvision import transforms from timm.data import resolve_data_config from modelguidedattacks.guides.unguided import Unguided from timm.data.transforms_factory import create_transform from modelguidedattacks.cls_models.registry import TimmPretrainModelWrapper # Download human-readable labels for ImageNet. IMAGENET_LABELS_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt" LABELS = requests.get(IMAGENET_LABELS_URL).text.strip().split("\n") SORTED_LABELS = sorted(LABELS.copy(), key=lambda s: s.lower()) def get_timm_model(name): """Retrieves model from timm library by name with weights loaded. """ model = create_model(name,pretrained="true") transform = create_transform(**resolve_data_config({}, model=model)) model = model.eval() return model, transform def create_attacker(model, transform, iterations): """ Instantiates an QuadAttack Model. """ # config_dict = {"cvx_proj_margin" : 0.2, # "opt_warmup_its": 5} with open("base_config.yaml") as f: config_dict = yaml.safe_load(f) config = types.SimpleNamespace(**config_dict) attacker = Unguided(TimmPretrainModelWrapper(model, transform,"", "", ""), config, iterations=iterations, lr=0.002, topk_loss_coef_upper=10) return attacker def predict_topk_accuracies(img, k, iters, model_name, desired_labels, button=None, progress=gr.Progress(track_tqdm=True)): """ Predict the top K results using base model and attacker model. """ label_inds = list(range(0,1000)) #label indices # convert user desired labels to desired inds desired_inds = [LABELS.index(name) for name in desired_labels] # remove selected before randomly sampling the rest for ind in desired_inds: label_inds.remove(ind) # fill up user selections to top k results desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds)) tensorized_desired_inds = torch.tensor(desired_inds).unsqueeze(0) #[B,K] model, transform = get_timm_model(model_name) # Define a transformation to convert PIL image to a tensor normalization = transforms.Compose([ transform.transforms[-1] # Converts to a PyTorch tensor ]) preprocess = transforms.Compose( transform.transforms[:-1] # Converts to a PyTorch tensor ) attacker = create_attacker(model, normalization, iters) img = img.convert('RGB') orig_img = img.copy() orig_img = preprocess(orig_img) orig_img = orig_img.unsqueeze(0) img = transform(img).unsqueeze(0) with torch.no_grad(): outputs = model(img) attack_outputs, attack_img = attacker(orig_img, tensorized_desired_inds, None) probabilities = torch.nn.functional.softmax(outputs[0], dim=0) attacker_probs = torch.nn.functional.softmax(attack_outputs[0], dim=0) values, indices = torch.topk(probabilities, k) attack_vals, attack_inds = torch.topk(attacker_probs, k) attack_img_out = orig_img + attack_img #B C H W # Convert the PyTorch tensor to a NumPy array attack_img_out = attack_img_out.squeeze(0) # C H W attack_img_out = attack_img_out.permute(1, 2, 0).numpy() # H W C orig_img = orig_img.squeeze(0) orig_img = orig_img.permute(1, 2, 0).numpy() attack_img = attack_img.squeeze(0) attack_img = attack_img.permute(1, 2, 0).numpy() # Convert the NumPy array to a PIL image attack_img_out = Image.fromarray((attack_img_out * 255).astype('uint8')) orig_img = Image.fromarray((orig_img * 255).astype('uint8')) attack_img = Image.fromarray((attack_img * 255).astype('uint8')) return (orig_img, attack_img_out, attack_img,{LABELS[i]: v.item() for i, v in zip(indices, values)}, {LABELS[i]: v.item() for i, v in zip(attack_inds, attack_vals)}) def random_fill_classes(desired_labels, k): label_inds = list(range(0,1000)) #label indices # convert user desired labels to desired inds if len(desired_labels) > k: desired_labels = desired_labels[:k] desired_inds = [LABELS.index(name) for name in desired_labels] # remove selected before randomly sampling the rest for ind in desired_inds: label_inds.remove(ind) # fill up user selections to top k results desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds)) return [LABELS[ind] for ind in desired_inds] input_img = gr.Image(type='pil') top_k_slider = gr.Slider(2, 20, value=10, step=1, label="Top K predictions", info="Choose between 2 and 20") iteration_slider = gr.Slider(30, 1000, value=60, step=1, label="QuadAttack Iterations", info="Choose how many iterations to optimize using QuadAttack! (Usually <= 60 is enough)") model_choice_list = gr.Dropdown( timm.list_models(), value="vit_base_patch16_224", label="timm model name", info="Currently only supporting timm models! See code for models used in paper." ) desired_labels = gr.Dropdown( SORTED_LABELS, max_choices=20,filterable=True, multiselect=True, label="Desired Labels for QuadAttack", info="Select classes you wish to output from an attack. \ Classes will be ranked in order listed and randomly filled up to \ K if < K options are selected." ) button = gr.Button("Randomly fill Top-K attack classes.") desc = r'
' with gr.Interface(predict_topk_accuracies, inputs=[input_img, top_k_slider, iteration_slider, model_choice_list, desired_labels, button], outputs=[ gr.Image(type='pil', label="Input Image"), gr.Image(type='pil', label="Perturbed Image"), gr.Image(type='pil', label="Added Noise"), gr.Label(label="Original Top K"), gr.Label(label="QuadAttack Top K"), # gr.Image(type='pil', label="Perturbed Image") ], title='QuadAttack!', description= desc, cache_examples=False, allow_flagging="never", thumbnail= "quadattack_pipeline.pdf", examples = [["image_examples/RV.jpeg", 5, 30, "vit_base_patch16_224", None, None # ["lemon", "plastic_bag", "hay", "tripod", "bell_cote, bell_cot"] ], # ["image_examples/biker.jpeg", 10, 60, "swinv2_cr_base_224", None, None # ["hog, pig, grunter, squealer, Sus_scrofa", # "lesser_panda, red_panda, panda, bear_cat, cat_bear, Ailurus_fulgens", # "caldron, cauldron", "dowitcher", "water_tower", "quill, quill_pen", # "balance_beam, beam", "unicycle, monocycle", "pencil_sharpener", # "puffer, pufferfish, blowfish, globefish" # ] # ], ["image_examples/mower.jpeg", 15, 100,"wide_resnet101_2", None , None # ["washbasin, handbasin, washbowl, lavabo, wash-hand_basin", # "cucumber, cuke", "bolete", "oboe, hautboy, hautboi", "crane", # "wolf_spider, hunting_spider", "Norfolk_terrier", "nail", "sidewinder, horned_rattlesnake, Crotalus_cerastes", # "cannon", "beaker", "Shetland_sheepdog, Shetland_sheep_dog, Shetland", # "monitor", "restaurant, eating_house, eating_place, eatery", "electric_fan, blower" # ] ], # ["image_examples/dog.jpeg", 20, 150, "xcit_small_12_p8_224", None, None # ["church, church_building", "axolotl, mud_puppy, Ambystoma_mexicanum", # "Scotch_terrier, Scottish_terrier, Scottie", "black-footed_ferret, ferret, Mustela_nigripes", # "lab_coat, laboratory_coat", "gyromitra", "grasshopper, hopper", "snail", "tabby, tabby_cat", # "bell_cote, bell_cot", "Indian_cobra, Naja_naja", "robin, American_robin, Turdus_migratorius", # "tiger_cat", "book_jacket, dust_cover, dust_jacket, dust_wrapper", "loudspeaker, speaker, speaker_unit, loudspeaker_system, speaker_system", # "washbasin, handbasin, washbowl, lavabo, wash-hand_basin", "electric_guitar", "armadillo", "ski_mask", # "convertible" # ] # ], ["image_examples/fish.jpeg", 10, 100, "pvt_v2_b0", None, None # ["ground_beetle, carabid_beetle", "sunscreen, sunblock, sun_blocker", "brass, memorial_tablet, plaque", "Irish_terrier", "head_cabbage", "bathtub, bathing_tub, bath, tub", # "centipede", "squirrel_monkey, Saimiri_sciureus", "Chihuahua", "hourglass" # ] ] ] ).queue() as app: #turn off clear button as it erases globals for block in app.blocks: if isinstance(app.blocks[block],gr.Button): if app.blocks[block].value == "Clear": app.blocks[block].visible=False button.click(random_fill_classes, inputs=[desired_labels,top_k_slider], outputs=desired_labels) if __name__ == "__main__": app.launch(server_port=9000)