RicardoDominguez
commited on
Commit
Β·
f3379d0
1
Parent(s):
432590f
cosmetic
Browse files- README.md +1 -0
- app.py +3 -2
- src/display/utils.py +20 -14
README.md
CHANGED
@@ -46,4 +46,5 @@ You'll find
|
|
46 |
|
47 |
# Todo
|
48 |
|
|
|
49 |
* Change background to white
|
|
|
46 |
|
47 |
# Todo
|
48 |
|
49 |
+
* Change model types
|
50 |
* Change background to white
|
app.py
CHANGED
@@ -60,6 +60,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
63 |
return Leaderboard(
|
64 |
value=dataframe,
|
65 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
@@ -68,7 +69,7 @@ def init_leaderboard(dataframe):
|
|
68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
label="Select columns to display:",
|
70 |
),
|
71 |
-
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
filter_columns=[
|
74 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
@@ -161,7 +162,7 @@ with demo:
|
|
161 |
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
label="Precision",
|
163 |
multiselect=False,
|
164 |
-
value="
|
165 |
interactive=True,
|
166 |
)
|
167 |
weight_type = gr.Dropdown(
|
|
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
+
|
64 |
return Leaderboard(
|
65 |
value=dataframe,
|
66 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
|
|
69 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
70 |
label="Select columns to display:",
|
71 |
),
|
72 |
+
search_columns=[AutoEvalColumn.model.name],#, AutoEvalColumn.license.name],
|
73 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
74 |
filter_columns=[
|
75 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
|
|
162 |
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
163 |
label="Precision",
|
164 |
multiselect=False,
|
165 |
+
value="bfloat16",
|
166 |
interactive=True,
|
167 |
)
|
168 |
weight_type = gr.Dropdown(
|
src/display/utils.py
CHANGED
@@ -62,10 +62,12 @@ class ModelDetails:
|
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
65 |
-
PT = ModelDetails(name="pretrained", symbol="π’")
|
66 |
-
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
67 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
68 |
-
RL = ModelDetails(name="RL-tuned", symbol="π¦")
|
|
|
|
|
69 |
Unknown = ModelDetails(name="", symbol="?")
|
70 |
|
71 |
def to_str(self, separator=" "):
|
@@ -73,24 +75,28 @@ class ModelType(Enum):
|
|
73 |
|
74 |
@staticmethod
|
75 |
def from_str(type):
|
76 |
-
if "fine-tuned" in type or "πΆ" in type:
|
77 |
-
|
78 |
-
if "pretrained" in type or "π’" in type:
|
79 |
-
|
80 |
-
if "RL-tuned" in type or "π¦" in type:
|
81 |
-
|
82 |
-
if "instruction-tuned" in type or "β" in type:
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
return ModelType.Unknown
|
85 |
|
86 |
class WeightType(Enum):
|
87 |
-
Adapter = ModelDetails("Adapter")
|
88 |
Original = ModelDetails("Original")
|
|
|
89 |
Delta = ModelDetails("Delta")
|
90 |
|
91 |
class Precision(Enum):
|
92 |
-
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
|
|
94 |
Unknown = ModelDetails("?")
|
95 |
|
96 |
def from_str(precision):
|
|
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
65 |
+
# PT = ModelDetails(name="pretrained", symbol="π’")
|
66 |
+
# FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
67 |
+
# IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
68 |
+
# RL = ModelDetails(name="RL-tuned", symbol="π¦")
|
69 |
+
UNSP = ModelDetails(name="π¬ Unspecialized", symbol="π¬")
|
70 |
+
SP = ModelDetails(name="ποΈ Specialized", symbol="ποΈ")
|
71 |
Unknown = ModelDetails(name="", symbol="?")
|
72 |
|
73 |
def to_str(self, separator=" "):
|
|
|
75 |
|
76 |
@staticmethod
|
77 |
def from_str(type):
|
78 |
+
# if "fine-tuned" in type or "πΆ" in type:
|
79 |
+
# return ModelType.FT
|
80 |
+
# if "pretrained" in type or "π’" in type:
|
81 |
+
# return ModelType.PT
|
82 |
+
# if "RL-tuned" in type or "π¦" in type:
|
83 |
+
# return ModelType.RL
|
84 |
+
# if "instruction-tuned" in type or "β" in type:
|
85 |
+
# return ModelType.IFT
|
86 |
+
if "Specialized" in type or "ποΈ" in type:
|
87 |
+
return ModelType.SP
|
88 |
+
if "Unspecialized" in type or "π¬" in type:
|
89 |
+
return ModelType.UNSP
|
90 |
return ModelType.Unknown
|
91 |
|
92 |
class WeightType(Enum):
|
|
|
93 |
Original = ModelDetails("Original")
|
94 |
+
Adapter = ModelDetails("Adapter")
|
95 |
Delta = ModelDetails("Delta")
|
96 |
|
97 |
class Precision(Enum):
|
|
|
98 |
bfloat16 = ModelDetails("bfloat16")
|
99 |
+
float16 = ModelDetails("float16")
|
100 |
Unknown = ModelDetails("?")
|
101 |
|
102 |
def from_str(precision):
|