File size: 18,979 Bytes
9afbbb8 99e7c03 3c3d942 9afbbb8 b4efc08 9afbbb8 99e7c03 8a36c39 1185d5b 8a36c39 3c3d942 9afbbb8 b7ec18f 9afbbb8 b7ec18f 9afbbb8 f26b7dd af675f5 9afbbb8 560d821 3c3d942 560d821 9afbbb8 560d821 3c3d942 99e7c03 9afbbb8 99e7c03 af675f5 9afbbb8 c21e0b7 9afbbb8 097b91f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import gradio as gr
import sqlite3
import sqlparse
import requests
import time
import re
import platform
import openai
import random
import concurrent.futures
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
)
# Additional Firebase imports
import firebase_admin
from firebase_admin import credentials, firestore
import json
import base64
import torch
print(f"Running on {platform.system()}")
if platform.system() == "Windows" or platform.system() == "Darwin":
from dotenv import load_dotenv
load_dotenv()
quantized_model = "richardr1126/spider-skeleton-wizard-coder-8bit"
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
initial_model = "WizardLM/WizardCoder-15B-V1.0"
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
dataset = "richardr1126/spider-skeleton-context-instruct"
model_name = os.getenv("HF_MODEL_NAME", None)
tok = AutoTokenizer.from_pretrained(model_name)
max_new_tokens = 1024
print(f"Starting to load the model {model_name}")
m = AutoModelForCausalLM.from_pretrained(
model_name,
device_map=0,
#load_in_8bit=True,
)
m.config.pad_token_id = m.config.eos_token_id
m.generation_config.pad_token_id = m.config.eos_token_id
print(f"Successfully loaded the model {model_name} into memory")
################# Firebase code #################
# Initialize Firebase
base64_string = os.getenv('FIREBASE')
base64_bytes = base64_string.encode('utf-8')
json_bytes = base64.b64decode(base64_bytes)
json_data = json_bytes.decode('utf-8')
firebase_auth = json.loads(json_data)
# Load credentials and initialize Firestore
cred = credentials.Certificate(firebase_auth)
firebase_admin.initialize_app(cred)
db = firestore.client()
def log_message_to_firestore(input_message, db_info, temperature, response_text):
doc_ref = db.collection('logs').document()
log_data = {
'timestamp': firestore.SERVER_TIMESTAMP,
'temperature': temperature,
'db_info': db_info,
'input': input_message,
'output': response_text,
}
doc_ref.set(log_data)
rated_outputs = set() # set to store already rated outputs
def log_rating_to_firestore(input_message, db_info, temperature, response_text, rating):
global rated_outputs
output_id = f"{input_message} {db_info} {response_text} {temperature}"
if output_id in rated_outputs:
gr.Warning("You've already rated this output!")
return
if not input_message or not response_text or not rating:
gr.Info("You haven't asked a question yet!")
return
rated_outputs.add(output_id)
doc_ref = db.collection('ratings').document()
log_data = {
'timestamp': firestore.SERVER_TIMESTAMP,
'temperature': temperature,
'db_info': db_info,
'input': input_message,
'output': response_text,
'rating': rating,
}
doc_ref.set(log_data)
gr.Info("Thanks for your feedback!")
############### End Firebase code ###############
def format(text):
# Split the text by "|", and get the last element in the list which should be the final query
try:
final_query = text.split("|")[1].strip()
except Exception:
final_query = text
try:
# Attempt to format SQL query using sqlparse
formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
except Exception:
# If formatting fails, use the original, unformatted query
formatted_query = final_query
# Convert SQL to markdown (not required, but just to show how to use the markdown module)
final_query_markdown = f"{formatted_query}"
return final_query_markdown
def extract_db_code(text):
print(text)
pattern = r'```(?:\w+)?\s?(.*?)```'
matches = re.findall(pattern, text, re.DOTALL)
return [match.strip() for match in matches]
def generate_dummy_db(db_info, question):
pre_prompt = """
Generate a SQLite database with dummy data for this database from the DB Layout. Your task is to generate just a database, no queries. For each input do the following:
1. Breakdown the Question into small pieces and explain what the question is asking for.
2. Write code to create the specified dummy database using the same exact table and column names used from the DB Layout. Insert dummy data relevant to the Question. Output the datbase code in a single code block. Don't write any queries or SELECT statements in the code.
"""
prompt = pre_prompt + "\n\nDB Layout:" + db_info + "\n\nQuestion: " + question
while True:
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": prompt}
],
#temperature=0.7,
)
response_text = response['choices'][0]['message']['content']
db_code = extract_db_code(response_text)
return db_code
except Exception as e:
print(f'Error occurred: {str(e)}')
print('Waiting for 10 seconds before retrying...')
time.sleep(10)
def test_query_on_dummy_db(db_code, query):
try:
# Connect to an SQLite database in memory
conn = sqlite3.connect(':memory:')
cursor = conn.cursor()
# Iterate over each extracted SQL block and split them into individual commands
for sql_block in db_code:
statements = sqlparse.split(sql_block)
# Execute each SQL command
for statement in statements:
if statement:
cursor.execute(statement)
# Run the provided test query against the database
cursor.execute(query)
print(cursor.fetchall())
# Close the connection
conn.close()
# If everything executed without errors, return True
return True
except Exception as e:
print(f"Error encountered: {e}")
return False
def generate(input_message: str, db_info="", temperature=0.2, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, log=False, num_return_sequences=1, num_beams=1, do_sample=False):
if num_return_sequences > num_beams:
gr.Warning("Num return sequences must be less than or equal to num beams.")
stop_token_ids = tok.convert_tokens_to_ids(["###"])
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
stop = StopOnTokens()
# Format the user's input message
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
input_ids = tok(messages, return_tensors="pt").input_ids
input_ids = input_ids.to(m.device)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
#streamer=streamer,
stopping_criteria=StoppingCriteriaList([stop]),
num_return_sequences=num_return_sequences,
num_beams=num_beams,
do_sample=do_sample,
)
# Generate dummy database code if num_return_sequences > 1 in a separate thread
db_code_future = None
if num_return_sequences > 1:
with concurrent.futures.ThreadPoolExecutor() as executor:
db_code_future = executor.submit(generate_dummy_db, db_info, input_message)
# Generate the SQL query
tokens = m.generate(**generate_kwargs)
# Wait for the dummy database code to finish generating
if db_code_future:
db_code = db_code_future.result()
responses = []
for response in tokens:
response_text = tok.decode(response, skip_special_tokens=True)
# Only take what comes after ### Response:
response_text = response_text.split("### Response:")[1].strip()
query = format(response_text) if format_sql else response_text
if (num_return_sequences > 1):
query = query.replace("\n", " ").replace("\t", " ").strip()
# Test against dummy database
success = test_query_on_dummy_db(db_code, query)
# Format again
query = format(query) if format_sql else query
if success:
responses.append(query)
else:
responses.append(query)
# Choose a random response from responses
output = responses[0] if len(responses) > 0 else "###"
if log:
# Log the request to Firestore
log_message_to_firestore(input_message, db_info, temperature, output)
return output
# Gradio UI Code
with gr.Blocks(theme='gradio/soft') as demo:
# Elements stack vertically by default just define elements in order you want them to stack
header = gr.HTML("""
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
<h3 style="text-align: center">π·οΈβ οΈπ§ββοΈ Generate SQL queries from Natural Language π·οΈβ οΈπ§ββοΈ</h3>
<div style="max-width: 450px; margin: auto; text-align: center">
<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate. Please rate the response, it helps a lot. If you get a blank output, the model server is currently down, please try again another time.</p>
</div>
""")
output_box = gr.Code(label="Generated SQL", lines=2, interactive=False)
with gr.Row():
rate_up = gr.Button("π", variant="secondary")
rate_down = gr.Button("π", variant="secondary")
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
db_info = gr.Textbox(lines=4, placeholder='Make sure to place your tables information inside || for better results. Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
with gr.Row():
run_button = gr.Button("Generate SQL", variant="primary")
clear_button = gr.ClearButton(variant="secondary")
with gr.Accordion("Options", open=False):
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
with gr.Accordion("Generation strategies", open=False):
md_description = gr.Markdown("""Increasing num return sequences will increase the number of SQLs generated, but will still yield only the best output of the number of return sequences. SQLs are tested against the db info you provide.""")
num_return_sequences = gr.Slider(label="Number of return sequences (to generate and test)", minimum=1, maximum=5, value=1, step=1)
num_beams = gr.Slider(label="Num Beams", minimum=1, maximum=5, value=1, step=1)
do_sample = gr.Checkbox(label="Do Sample", value=False, interactive=True)
info = gr.HTML(f"""
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>bitsandbytes 8-bit version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
<p>π All inputs/outputs are logged to Firebase to see how the model is doing. You can also leave a rating for each generated SQL the model produces, which gets sent to the database as well.</a></p>
""")
examples = gr.Examples([
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"],
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql], fn=generate, cache_examples=False, outputs=output_box)
# if platform.system() == "Windows" or platform.system() == "Darwin" else True
with gr.Accordion("More Examples", open=False):
examples = gr.Examples([
["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql], fn=generate, cache_examples=False, outputs=output_box)
readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) #Remove YAML front matter
with gr.Accordion("π Model Readme", open=True):
readme = gr.Markdown(
readme_content,
)
with gr.Accordion("Disabled Options:", open=False):
log = gr.Checkbox(label="Log to Firebase", value=True, interactive=False)
# When the button is clicked, call the generate function, inputs are taken from the UI elements, outputs are sent to outputs elements
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, log, num_return_sequences, num_beams, do_sample], outputs=output_box, api_name="txt2sql")
clear_button.add([input_text, db_info, output_box])
# Firebase code - for rating the generated SQL (remove if you don't want to use Firebase)
rate_up.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_up])
rate_down.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_down])
demo.queue(concurrency_count=1, max_size=20).launch(debug=True) |