|
import os
|
|
import gradio as gr
|
|
import sqlparse
|
|
import requests
|
|
from time import sleep
|
|
import re
|
|
import platform
|
|
|
|
import firebase_admin
|
|
from firebase_admin import credentials, firestore
|
|
import json
|
|
import base64
|
|
|
|
print(f"Running on {platform.system()}")
|
|
|
|
if platform.system() == "Windows" or platform.system() == "Darwin":
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
|
|
quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
|
|
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
|
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
|
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
|
dataset = "richardr1126/spider-skeleton-context-instruct"
|
|
|
|
|
|
|
|
base64_string = os.getenv('FIREBASE')
|
|
base64_bytes = base64_string.encode('utf-8')
|
|
json_bytes = base64.b64decode(base64_bytes)
|
|
json_data = json_bytes.decode('utf-8')
|
|
|
|
firebase_auth = json.loads(json_data)
|
|
|
|
|
|
cred = credentials.Certificate(firebase_auth)
|
|
firebase_admin.initialize_app(cred)
|
|
db = firestore.client()
|
|
|
|
def log_message_to_firestore(input_message, db_info, temperature, response_text):
|
|
doc_ref = db.collection('logs').document()
|
|
log_data = {
|
|
'timestamp': firestore.SERVER_TIMESTAMP,
|
|
'temperature': temperature,
|
|
'db_info': db_info,
|
|
'input': input_message,
|
|
'output': response_text,
|
|
}
|
|
doc_ref.set(log_data)
|
|
|
|
rated_outputs = set()
|
|
|
|
def log_rating_to_firestore(input_message, db_info, temperature, response_text, rating):
|
|
global rated_outputs
|
|
output_id = f"{input_message} {db_info} {response_text} {temperature}"
|
|
|
|
if output_id in rated_outputs:
|
|
gr.Warning("You've already rated this output!")
|
|
return
|
|
if not input_message or not response_text or not rating:
|
|
gr.Info("You haven't asked a question yet!")
|
|
return
|
|
|
|
rated_outputs.add(output_id)
|
|
|
|
doc_ref = db.collection('ratings').document()
|
|
log_data = {
|
|
'timestamp': firestore.SERVER_TIMESTAMP,
|
|
'temperature': temperature,
|
|
'db_info': db_info,
|
|
'input': input_message,
|
|
'output': response_text,
|
|
'rating': rating,
|
|
}
|
|
doc_ref.set(log_data)
|
|
gr.Info("Thanks for your feedback!")
|
|
|
|
|
|
def format(text):
|
|
|
|
try:
|
|
final_query = text.split("|")[1].strip()
|
|
except Exception:
|
|
final_query = text
|
|
|
|
try:
|
|
|
|
formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
|
|
except Exception:
|
|
|
|
formatted_query = final_query
|
|
|
|
|
|
final_query_markdown = f"{formatted_query}"
|
|
|
|
return final_query_markdown
|
|
|
|
def generate(input_message: str, db_info="", temperature=0.2, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, stop_sequence="###", log=False):
|
|
|
|
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
|
|
|
|
url = os.getenv("KOBOLDCPP_API_URL")
|
|
stop_sequence = stop_sequence.split(",")
|
|
stop = ["###"] + stop_sequence
|
|
payload = {
|
|
"prompt": messages,
|
|
"temperature": temperature,
|
|
"top_p": top_p,
|
|
"top_k": top_k,
|
|
"top_a": 0,
|
|
"n": 1,
|
|
"max_context_length": 2048,
|
|
"max_length": 512,
|
|
"rep_pen": repetition_penalty,
|
|
"sampler_order": [6,0,1,3,4,2,5],
|
|
"stop_sequence": stop,
|
|
}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"ngrok-skip-browser-warning": "1"
|
|
}
|
|
|
|
for _ in range(3):
|
|
try:
|
|
response = requests.post(url, json=payload, headers=headers)
|
|
response_text = response.json()["results"][0]["text"]
|
|
response_text = response_text.replace("\n", "").replace("\t", " ")
|
|
if response_text and response_text[-1] == ".":
|
|
response_text = response_text[:-1]
|
|
|
|
output = format(response_text) if format_sql else response_text
|
|
|
|
if log:
|
|
|
|
log_message_to_firestore(input_message, db_info, temperature, output if format_sql else response_text)
|
|
|
|
return output
|
|
|
|
|
|
except Exception as e:
|
|
print(f'Error occurred: {str(e)}')
|
|
print('Waiting for 10 seconds before retrying...')
|
|
gr.Warning("Error occurred, retrying, the sever may be down...")
|
|
sleep(10)
|
|
|
|
|
|
with gr.Blocks(theme='gradio/soft') as demo:
|
|
|
|
header = gr.HTML("""
|
|
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
|
|
<h3 style="text-align: center">π·οΈβ οΈπ§ββοΈ Generate SQL queries from Natural Language π·οΈβ οΈπ§ββοΈ</h3>
|
|
<div style="max-width: 450px; margin: auto; text-align: center">
|
|
<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate. Please rate the response, it helps a lot. If you get a blank output, the model server is currently down, please try again another time.</p>
|
|
</div>
|
|
""")
|
|
|
|
output_box = gr.Code(label="Generated SQL", lines=2, interactive=False)
|
|
|
|
with gr.Row():
|
|
rate_up = gr.Button("π", variant="secondary")
|
|
rate_down = gr.Button("π", variant="secondary")
|
|
|
|
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
|
db_info = gr.Textbox(lines=4, placeholder='Make sure to place your tables information inside || for better results. Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
|
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
|
|
|
|
with gr.Row():
|
|
run_button = gr.Button("Generate SQL", variant="primary")
|
|
clear_button = gr.ClearButton(variant="secondary")
|
|
|
|
with gr.Accordion("Options", open=False):
|
|
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
|
|
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
|
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
|
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
|
stop_sequence = gr.Textbox(lines=1, value="Explanation,Note", label='Extra Stop Sequence')
|
|
|
|
info = gr.HTML(f"""
|
|
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
|
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
|
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
|
<p>π All inputs/outputs are logged to Firebase to see how the model is doing. You can also leave a rating for each generated SQL the model produces, which gets sent to the database as well.</a></p>
|
|
""")
|
|
|
|
examples = gr.Examples([
|
|
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"],
|
|
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=generate, cache_examples=False if platform.system() == "Windows" or platform.system() == "Darwin" else True, outputs=output_box)
|
|
|
|
with gr.Accordion("More Examples", open=False):
|
|
examples = gr.Examples([
|
|
["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=generate, cache_examples=False, outputs=output_box)
|
|
|
|
|
|
readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text
|
|
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL)
|
|
|
|
with gr.Accordion("π Model Readme", open=True):
|
|
readme = gr.Markdown(
|
|
readme_content,
|
|
)
|
|
|
|
with gr.Accordion("Disabled Options:", open=False):
|
|
log = gr.Checkbox(label="Log to Firebase", value=True, interactive=False)
|
|
|
|
|
|
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence, log], outputs=output_box, api_name="txt2sql")
|
|
clear_button.add([input_text, db_info, output_box])
|
|
|
|
|
|
rate_up.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_up])
|
|
rate_down.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_down])
|
|
|
|
demo.queue(concurrency_count=1, max_size=20).launch(debug=True) |