Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
class Pseudo3DConv(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out, | |
kernel_size, | |
**kwargs | |
): | |
super().__init__() | |
self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size, **kwargs) | |
self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size, padding=kernel_size // 2) | |
self.temporal_conv = nn.Conv1d(dim_out, dim_out, 3, padding=1) | |
nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity | |
nn.init.zeros_(self.temporal_conv.bias.data) | |
def forward( | |
self, | |
x, | |
convolve_across_time = True | |
): | |
b, c, *_, h, w = x.shape | |
is_video = x.ndim == 5 | |
convolve_across_time &= is_video | |
if is_video: | |
x = rearrange(x, 'b c f h w -> (b f) c h w') | |
#with torch.no_grad(): | |
# x = self.spatial_conv(x) | |
x = self.spatial_conv(x) | |
if is_video: | |
x = rearrange(x, '(b f) c h w -> b c f h w', b = b) | |
b, c, *_, h, w = x.shape | |
if not convolve_across_time: | |
return x | |
if is_video: | |
x = rearrange(x, 'b c f h w -> (b h w) c f') | |
x = self.temporal_conv(x) | |
x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w) | |
return x | |
class Upsample2D(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
use_conv_transpose: | |
out_channels: | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
conv = Pseudo3DConv(self.channels, self.out_channels, 3, padding=1) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.conv = conv | |
else: | |
self.Conv2d_0 = conv | |
def forward(self, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(hidden_states) | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
# https://github.com/pytorch/pytorch/issues/86679 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
b, c, *_, h, w = hidden_states.shape | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w') | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
else: | |
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
if is_video: | |
hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b = b) | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if self.use_conv: | |
if self.name == "conv": | |
hidden_states = self.conv(hidden_states) | |
else: | |
hidden_states = self.Conv2d_0(hidden_states) | |
return hidden_states | |
class Downsample2D(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
out_channels: | |
padding: | |
""" | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
conv = Pseudo3DConv(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.Conv2d_0 = conv | |
self.conv = conv | |
elif name == "Conv2d_0": | |
self.conv = conv | |
else: | |
self.conv = conv | |
def forward(self, hidden_states): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
pad = (0, 1, 0, 1) | |
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv: | |
hidden_states = self.conv(hidden_states) | |
else: | |
b, c, *_, h, w = hidden_states.shape | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w') | |
hidden_states = self.conv(hidden_states) | |
if is_video: | |
hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b = b) | |
return hidden_states | |
class ResnetBlockPseudo3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
time_embedding_norm="default", | |
kernel=None, | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
print('OUTPUT_SCALE_FACTOR:', output_scale_factor) | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = Pseudo3DConv(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = Pseudo3DConv(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.nonlinearity = nn.SiLU() | |
self.upsample = self.downsample = None | |
if self.up: | |
self.upsample = Upsample2D(in_channels, use_conv=False) | |
elif self.down: | |
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") | |
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = Pseudo3DConv(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
b, c, *_, h, w = hidden_states.shape | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
b, c, f, h, w = hidden_states.shape | |
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w') | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
hidden_states = hidden_states + temb.repeat_interleave(f, 0) | |
hidden_states = rearrange(hidden_states, '(b f) c h w -> b c f h w', b=b) | |
else: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |