Spaces:
Sleeping
Sleeping
# OCR Translate v0.2 | |
# 创建人:曾逸夫 | |
# 创建时间:2022-07-19 | |
import os | |
os.system("sudo apt-get install xclip") | |
import gradio as gr | |
import nltk | |
import pyclip | |
import pytesseract | |
from nltk.tokenize import sent_tokenize | |
from transformers import MarianMTModel, MarianTokenizer | |
from easynmt import EasyNMT | |
nltk.download("punkt") | |
OCR_TR_DESCRIPTION = """# OCR + Translate | |
<div id="content_align">OCR translation system based on Tesseract</div>""" | |
# image file path | |
img_dir = "./data" | |
# extract tesseract language list | |
choices = os.popen("tesseract --list-langs").read().split("\n")[1:-1] | |
# loading of m2m model via EasyNMT | |
m2m_model = EasyNMT("m2m_100_1.2B") | |
# translation model selection | |
def model_choice(src="en", trg="zh"): | |
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en | |
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh | |
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # 模型名称 | |
tokenizer = MarianTokenizer.from_pretrained(model_name) # 分词器 | |
model = MarianMTModel.from_pretrained(model_name) # 模型 | |
return tokenizer, model | |
# tesseract language list to pytesseract language | |
def ocr_lang(lang_list): | |
lang_str = "" | |
lang_len = len(lang_list) | |
if lang_len == 1: | |
return lang_list[0] | |
else: | |
for i in range(lang_len): | |
lang_list.insert(lang_len - i, "+") | |
lang_str = "".join(lang_list[:-1]) | |
return lang_str | |
# ocr tesseract | |
def ocr_tesseract(img, languages): | |
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) | |
return ocr_str | |
# clear content | |
def clear_content(): | |
return None | |
# copy to clipboard | |
def cp_text(input_text): | |
# sudo apt-get install xclip | |
try: | |
pyclip.copy(input_text) | |
except Exception as e: | |
print("sudo apt-get install xclip") | |
print(e) | |
# clear clipboard | |
def cp_clear(): | |
pyclip.clear() | |
# translate | |
def translate(input_text, inputs_transStyle): | |
# reference:https://huggingface.co/docs/transformers/model_doc/marian | |
if input_text is None or input_text == "": | |
return "System prompt: There is no content to translate!" | |
# Choose Translation model | |
trans_src, trans_trg = ( | |
inputs_transStyle.split("-")[0], | |
inputs_transStyle.split("-")[1], | |
) | |
# tokenizer, model = model_choice(trans_src, trans_trg) | |
translate_text = "" | |
input_text_list = input_text.split("\n\n") | |
translate_text_list_tmp = [] | |
for i in range(len(input_text_list)): | |
if input_text_list[i] != "": | |
translate_text_list_tmp.append(input_text_list[i]) | |
print("length of translate text list temp:") | |
print(len(translate_text_list_tmp)) | |
print(translate_text_list_tmp) | |
for i in range(len(translate_text_list_tmp)): | |
tgt_text_sub = m2m_model.translate(translate_text_list_tmp[i], trans_trg) | |
# translated_sub = model.generate( | |
# **tokenizer( | |
# sent_tokenize(translate_text_list_tmp[i]), | |
# return_tensors="pt", | |
# truncation=True, | |
# padding=True, | |
# ) | |
# ) | |
# tgt_text_sub = [ | |
# tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub | |
# ] | |
translate_text_sub = "".join(tgt_text_sub) | |
translate_text = translate_text + "\n\n" + translate_text_sub | |
return translate_text[2:] | |
def main(): | |
with gr.Blocks(css="style.css") as ocr_tr: | |
gr.Markdown(OCR_TR_DESCRIPTION) | |
# -------------- OCR text extraction -------------- | |
with gr.Box(): | |
with gr.Row(): | |
gr.Markdown("### Step 01: Text Extraction") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
inputs_img = gr.Image( | |
image_mode="RGB", source="upload", type="pil", label="image" | |
) | |
with gr.Row(): | |
inputs_lang = gr.CheckboxGroup( | |
choices=[ | |
"chi_sim", | |
"chi_tra", | |
"eng", | |
"kor", | |
"msa", | |
"tha", | |
"vie", | |
], | |
type="value", | |
value=["eng"], | |
label="language", | |
) | |
with gr.Row(): | |
clear_img_btn = gr.Button("Clear") | |
ocr_btn = gr.Button(value="OCR Extraction", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
outputs_text = gr.Textbox(label="Extract content", lines=20) | |
with gr.Row(): | |
inputs_transStyle = gr.Radio( | |
choices=[ | |
"zh-en", | |
"en-zh", | |
"th-en", | |
"en-th", | |
"vi-en", | |
"en-vi", | |
"ko-en", | |
"en-ko", | |
"ja-en", | |
"en-ja", | |
], | |
type="value", | |
value="zh-en", | |
label="Translation Mode", | |
) | |
with gr.Row(): | |
clear_text_btn = gr.Button("Clear") | |
translate_btn = gr.Button(value="Translate", variant="primary") | |
with gr.Row(): | |
example_list = [ | |
["./data/test.png", ["eng"]], | |
["./data/test02.png", ["eng"]], | |
["./data/test03.png", ["chi_sim"]], | |
] | |
gr.Examples( | |
example_list, | |
[inputs_img, inputs_lang], | |
outputs_text, | |
ocr_tesseract, | |
cache_examples=False, | |
) | |
# -------------- translation -------------- | |
with gr.Box(): | |
with gr.Row(): | |
gr.Markdown("### Step 02: Translation") | |
with gr.Row(): | |
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) | |
with gr.Row(): | |
cp_clear_btn = gr.Button(value="Clear Clipboard") | |
cp_btn = gr.Button(value="Copy to clipboard", variant="primary") | |
# ---------------------- OCR Tesseract ---------------------- | |
ocr_btn.click( | |
fn=ocr_tesseract, | |
inputs=[inputs_img, inputs_lang], | |
outputs=[ | |
outputs_text, | |
], | |
) | |
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) | |
# ---------------------- translate ---------------------- | |
translate_btn.click( | |
fn=translate, | |
inputs=[outputs_text, inputs_transStyle], | |
outputs=[outputs_tr_text], | |
) | |
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) | |
# ---------------------- clipboard ---------------------- | |
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) | |
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) | |
ocr_tr.launch(inbrowser=True) | |
if __name__ == "__main__": | |
main() | |