# OCR Translate v0.2 # 创建人:曾逸夫 # 创建时间:2022-07-19 import os os.system("sudo apt-get install xclip") import gradio as gr import nltk import pyclip import pytesseract from nltk.tokenize import sent_tokenize from transformers import MarianMTModel, MarianTokenizer from easynmt import EasyNMT nltk.download("punkt") OCR_TR_DESCRIPTION = """# OCR + Translate
OCR translation system based on Tesseract
""" # image file path img_dir = "./data" # extract tesseract language list choices = os.popen("tesseract --list-langs").read().split("\n")[1:-1] # loading of m2m model via EasyNMT m2m_model = EasyNMT("m2m_100_1.2B") # translation model selection def model_choice(src="en", trg="zh"): # https://huggingface.co/Helsinki-NLP/opus-mt-zh-en # https://huggingface.co/Helsinki-NLP/opus-mt-en-zh model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # 模型名称 tokenizer = MarianTokenizer.from_pretrained(model_name) # 分词器 model = MarianMTModel.from_pretrained(model_name) # 模型 return tokenizer, model # tesseract language list to pytesseract language def ocr_lang(lang_list): lang_str = "" lang_len = len(lang_list) if lang_len == 1: return lang_list[0] else: for i in range(lang_len): lang_list.insert(lang_len - i, "+") lang_str = "".join(lang_list[:-1]) return lang_str # ocr tesseract def ocr_tesseract(img, languages): ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) return ocr_str # clear content def clear_content(): return None # copy to clipboard def cp_text(input_text): # sudo apt-get install xclip try: pyclip.copy(input_text) except Exception as e: print("sudo apt-get install xclip") print(e) # clear clipboard def cp_clear(): pyclip.clear() # translate def translate(input_text, inputs_transStyle): # reference:https://huggingface.co/docs/transformers/model_doc/marian if input_text is None or input_text == "": return "System prompt: There is no content to translate!" # Choose Translation model trans_src, trans_trg = ( inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1], ) # tokenizer, model = model_choice(trans_src, trans_trg) translate_text = "" input_text_list = input_text.split("\n\n") translate_text_list_tmp = [] for i in range(len(input_text_list)): if input_text_list[i] != "": translate_text_list_tmp.append(input_text_list[i]) print("length of translate text list temp:") print(len(translate_text_list_tmp)) print(translate_text_list_tmp) for i in range(len(translate_text_list_tmp)): tgt_text_sub = m2m_model.translate(translate_text_list_tmp[i], trans_trg) # translated_sub = model.generate( # **tokenizer( # sent_tokenize(translate_text_list_tmp[i]), # return_tensors="pt", # truncation=True, # padding=True, # ) # ) # tgt_text_sub = [ # tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub # ] translate_text_sub = "".join(tgt_text_sub) translate_text = translate_text + "\n\n" + translate_text_sub return translate_text[2:] def main(): with gr.Blocks(css="style.css") as ocr_tr: gr.Markdown(OCR_TR_DESCRIPTION) # -------------- OCR text extraction -------------- with gr.Box(): with gr.Row(): gr.Markdown("### Step 01: Text Extraction") with gr.Row(): with gr.Column(): with gr.Row(): inputs_img = gr.Image( image_mode="RGB", source="upload", type="pil", label="image" ) with gr.Row(): inputs_lang = gr.CheckboxGroup( choices=[ "chi_sim", "chi_tra", "eng", "kor", "msa", "tha", "vie", ], type="value", value=["eng"], label="language", ) with gr.Row(): clear_img_btn = gr.Button("Clear") ocr_btn = gr.Button(value="OCR Extraction", variant="primary") with gr.Column(): with gr.Row(): outputs_text = gr.Textbox(label="Extract content", lines=20) with gr.Row(): inputs_transStyle = gr.Radio( choices=[ "zh-en", "en-zh", "th-en", "en-th", "vi-en", "en-vi", "ko-en", "en-ko", "ja-en", "en-ja", ], type="value", value="zh-en", label="Translation Mode", ) with gr.Row(): clear_text_btn = gr.Button("Clear") translate_btn = gr.Button(value="Translate", variant="primary") with gr.Row(): example_list = [ ["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], ["./data/test03.png", ["chi_sim"]], ] gr.Examples( example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False, ) # -------------- translation -------------- with gr.Box(): with gr.Row(): gr.Markdown("### Step 02: Translation") with gr.Row(): outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) with gr.Row(): cp_clear_btn = gr.Button(value="Clear Clipboard") cp_btn = gr.Button(value="Copy to clipboard", variant="primary") # ---------------------- OCR Tesseract ---------------------- ocr_btn.click( fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ outputs_text, ], ) clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) # ---------------------- translate ---------------------- translate_btn.click( fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text], ) clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) # ---------------------- clipboard ---------------------- cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) ocr_tr.launch(inbrowser=True) if __name__ == "__main__": main()