jorag2 / ComfyUI /comfy /model_base.py
flatcherlee's picture
Upload 273 files
932ae62 verified
raw
history blame
31.1 kB
import torch
import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.cascade.stage_c import StageC
from comfy.ldm.cascade.stage_b import StageB
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
import comfy.ldm.aura.mmdit
import comfy.ldm.hydit.models
import comfy.ldm.audio.dit
import comfy.ldm.audio.embedders
import comfy.ldm.flux.model
import comfy.model_management
import comfy.conds
import comfy.ops
from enum import Enum
from . import utils
import comfy.latent_formats
import math
class ModelType(Enum):
EPS = 1
V_PREDICTION = 2
V_PREDICTION_EDM = 3
STABLE_CASCADE = 4
EDM = 5
FLOW = 6
V_PREDICTION_CONTINUOUS = 7
FLUX = 8
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
def model_sampling(model_config, model_type):
s = ModelSamplingDiscrete
if model_type == ModelType.EPS:
c = EPS
elif model_type == ModelType.V_PREDICTION:
c = V_PREDICTION
elif model_type == ModelType.V_PREDICTION_EDM:
c = V_PREDICTION
s = ModelSamplingContinuousEDM
elif model_type == ModelType.FLOW:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingDiscreteFlow
elif model_type == ModelType.STABLE_CASCADE:
c = EPS
s = StableCascadeSampling
elif model_type == ModelType.EDM:
c = EDM
s = ModelSamplingContinuousEDM
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
c = V_PREDICTION
s = ModelSamplingContinuousV
elif model_type == ModelType.FLUX:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingFlux
class ModelSampling(s, c):
pass
return ModelSampling(model_config)
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
super().__init__()
unet_config = model_config.unet_config
self.latent_format = model_config.latent_format
self.model_config = model_config
self.manual_cast_dtype = model_config.manual_cast_dtype
self.device = device
if not unet_config.get("disable_unet_model_creation", False):
if self.manual_cast_dtype is not None:
operations = comfy.ops.manual_cast
else:
operations = comfy.ops.disable_weight_init
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
if comfy.model_management.force_channels_last():
self.diffusion_model.to(memory_format=torch.channels_last)
logging.debug("using channels last mode for diffusion model")
logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype))
self.model_type = model_type
self.model_sampling = model_sampling(model_config, model_type)
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
self.adm_channels = 0
self.concat_keys = ()
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t
xc = self.model_sampling.calculate_input(sigma, x)
if c_concat is not None:
xc = torch.cat([xc] + [c_concat], dim=1)
context = c_crossattn
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
xc = xc.to(dtype)
t = self.model_sampling.timestep(t).float()
context = context.to(dtype)
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra_conds[o] = extra
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def get_dtype(self):
return self.diffusion_model.dtype
def is_adm(self):
return self.adm_channels > 0
def encode_adm(self, **kwargs):
return None
def extra_conds(self, **kwargs):
out = {}
if len(self.concat_keys) > 0:
cond_concat = []
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
concat_latent_image = kwargs.get("concat_latent_image", None)
if concat_latent_image is None:
concat_latent_image = kwargs.get("latent_image", None)
else:
concat_latent_image = self.process_latent_in(concat_latent_image)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if concat_latent_image.shape[1:] != noise.shape[1:]:
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
if denoise_mask is not None:
if len(denoise_mask.shape) == len(noise.shape):
denoise_mask = denoise_mask[:,:1]
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
if denoise_mask.shape[-2:] != noise.shape[-2:]:
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
for ck in self.concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask.to(device))
elif ck == "masked_image":
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(self.blank_inpaint_image_like(noise))
data = torch.cat(cond_concat, dim=1)
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
if cross_attn_cnet is not None:
out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet)
c_concat = kwargs.get("noise_concat", None)
if c_concat is not None:
out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat)
return out
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}
keys = list(sd.keys())
for k in keys:
if k.startswith(unet_prefix):
to_load[k[len(unet_prefix):]] = sd.pop(k)
to_load = self.model_config.process_unet_state_dict(to_load)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
logging.warning("unet missing: {}".format(m))
if len(u) > 0:
logging.warning("unet unexpected: {}".format(u))
del to_load
return self
def process_latent_in(self, latent):
return self.latent_format.process_in(latent)
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
extra_sds = []
if clip_state_dict is not None:
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
if vae_state_dict is not None:
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
if clip_vision_state_dict is not None:
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
unet_state_dict["v_pred"] = torch.tensor([])
for sd in extra_sds:
unet_state_dict.update(sd)
return unet_state_dict
def set_inpaint(self):
self.concat_keys = ("mask", "masked_image")
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
self.blank_inpaint_image_like = blank_inpaint_image_like
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked
area = input_shape[0] * math.prod(input_shape[2:])
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = input_shape[0] * math.prod(input_shape[2:])
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
noise_augment = noise_augment_merge
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
return adm_out
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
def encode_adm(self, **kwargs):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
if unclip_conditioning is None:
return torch.zeros((1, self.adm_channels))
else:
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
def sdxl_pooled(args, noise_augmentor):
if "unclip_conditioning" in args:
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
else:
return args["pooled_output"]
class SDXLRefiner(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
if kwargs.get("prompt_type", "") == "negative":
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
else:
aesthetic_score = kwargs.get("aesthetic_score", 6)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SDXL(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SVD_img2vid(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
def encode_adm(self, **kwargs):
fps_id = kwargs.get("fps", 6) - 1
motion_bucket_id = kwargs.get("motion_bucket_id", 127)
augmentation = kwargs.get("augmentation_level", 0)
out = []
out.append(self.embedder(torch.Tensor([fps_id])))
out.append(self.embedder(torch.Tensor([motion_bucket_id])))
out.append(self.embedder(torch.Tensor([augmentation])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
return flat
def extra_conds(self, **kwargs):
out = {}
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
latent_image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if latent_image is None:
latent_image = torch.zeros_like(noise)
if latent_image.shape[1:] != noise.shape[1:]:
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
if "time_conditioning" in kwargs:
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
return out
class SV3D_u(SVD_img2vid):
def encode_adm(self, **kwargs):
augmentation = kwargs.get("augmentation_level", 0)
out = []
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
return flat
class SV3D_p(SVD_img2vid):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder_512 = Timestep(512)
def encode_adm(self, **kwargs):
augmentation = kwargs.get("augmentation_level", 0)
elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here
azimuth = kwargs.get("azimuth", 0)
noise = kwargs.get("noise", None)
out = []
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0))))
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0))))
out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out))
return torch.cat(out, dim=1)
class Stable_Zero123(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
super().__init__(model_config, model_type, device=device)
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
self.cc_projection.weight.copy_(cc_projection_weight)
self.cc_projection.bias.copy_(cc_projection_bias)
def extra_conds(self, **kwargs):
out = {}
latent_image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if latent_image is None:
latent_image = torch.zeros_like(noise)
if latent_image.shape[1:] != noise.shape[1:]:
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
if cross_attn.shape[-1] != 768:
cross_attn = self.cc_projection(cross_attn)
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
class SD_X4Upscaler(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device)
self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
def extra_conds(self, **kwargs):
out = {}
image = kwargs.get("concat_image", None)
noise = kwargs.get("noise", None)
noise_augment = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
seed = kwargs["seed"] - 10
noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
if image is None:
image = torch.zeros_like(noise)[:,:3]
if image.shape[1:] != noise.shape[1:]:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
noise_level = torch.tensor([noise_level], device=device)
if noise_augment > 0:
image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
image = utils.resize_to_batch_size(image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(image)
out['y'] = comfy.conds.CONDRegular(noise_level)
return out
class IP2P:
def extra_conds(self, **kwargs):
out = {}
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if image is None:
image = torch.zeros_like(noise)
if image.shape[1:] != noise.shape[1:]:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = utils.resize_to_batch_size(image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_ip2p_image_in(image))
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
return out
class SD15_instructpix2pix(IP2P, BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.process_ip2p_image_in = lambda image: image
class SDXL_instructpix2pix(IP2P, SDXL):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
if model_type == ModelType.V_PREDICTION_EDM:
self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p
else:
self.process_ip2p_image_in = lambda image: image #diffusers ip2p
class StableCascade_C(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
super().__init__(model_config, model_type, device=device, unet_model=StageC)
self.diffusion_model.eval().requires_grad_(False)
def extra_conds(self, **kwargs):
out = {}
clip_text_pooled = kwargs["pooled_output"]
if clip_text_pooled is not None:
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
if "unclip_conditioning" in kwargs:
embeds = []
for unclip_cond in kwargs["unclip_conditioning"]:
weight = unclip_cond["strength"]
embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
clip_img = torch.cat(embeds, dim=1)
else:
clip_img = torch.zeros((1, 1, 768))
out["clip_img"] = comfy.conds.CONDRegular(clip_img)
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
class StableCascade_B(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
super().__init__(model_config, model_type, device=device, unet_model=StageB)
self.diffusion_model.eval().requires_grad_(False)
def extra_conds(self, **kwargs):
out = {}
noise = kwargs.get("noise", None)
clip_text_pooled = kwargs["pooled_output"]
if clip_text_pooled is not None:
out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
out["effnet"] = comfy.conds.CONDRegular(prior)
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
return out
class SD3(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class AuraFlow(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.aura.mmdit.MMDiT)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class StableAudio1(BaseModel):
def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer)
self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights)
self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights)
def extra_conds(self, **kwargs):
out = {}
noise = kwargs.get("noise", None)
device = kwargs["device"]
seconds_start = kwargs.get("seconds_start", 0)
seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53))
seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device)
seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device)
global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1))
out['global_embed'] = comfy.conds.CONDRegular(global_embed)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1)
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()}
for k in d:
s = d[k]
for l in s:
sd["{}{}".format(k, l)] = s[l]
return sd
class HunyuanDiT(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['text_embedding_mask'] = comfy.conds.CONDRegular(attention_mask)
conditioning_mt5xl = kwargs.get("conditioning_mt5xl", None)
if conditioning_mt5xl is not None:
out['encoder_hidden_states_t5'] = comfy.conds.CONDRegular(conditioning_mt5xl)
attention_mask_mt5xl = kwargs.get("attention_mask_mt5xl", None)
if attention_mask_mt5xl is not None:
out['text_embedding_mask_t5'] = comfy.conds.CONDRegular(attention_mask_mt5xl)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
return out
class Flux(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
return out