riiswa's picture
Try to repair Mujoco
e27178f
raw
history blame
6.49 kB
import glob
import os
import gymnasium as gym
import numpy as np
from gymnasium.wrappers import RecordVideo
from moviepy.video.compositing.concatenate import concatenate_videoclips
from moviepy.video.io.VideoFileClip import VideoFileClip
from sympy import latex
from interpretable import InterpretablePolicyExtractor
from utils import generate_dataset_from_expert, rollouts
import matplotlib.pyplot as plt
import torch
import gradio as gr
intro = """
# Making RL Policy Interpretable with Kolmogorov-Arnold Network 🧠 ➙ 🔢
Waris Radji<sup>1</sup>, Corentin Léger<sup>2</sup>, Hector Kohler<sup>1</sup>
<small><sup>1</sup>[Inria, team Scool](https://team.inria.fr/scool/) <sup>2</sup>[Inria, team Flowers](https://flowers.inria.fr/)</small>
In this demo, we showcase a method to make a trained Reinforcement Learning (RL) policy interpretable using the Kolmogorov-Arnold Network (KAN). The process involves transferring the knowledge from a pre-trained RL policy to a KAN. We achieve this by training the KAN to map actions from observations obtained from trajectories of the pre-trained policy.
## Procedure
- Train the KAN using observations from trajectories generated by a pre-trained RL policy, the KAN learns to map observations to corresponding actions.
- Apply symbolic regression algorithms to the KAN's learned mapping.
- Extract an interpretable policy expressed in symbolic form.
For more information about KAN you can read the [paper](https://arxiv.org/abs/2404.19756), and check the [PyTorch official information](https://github.com/KindXiaoming/pykan).
To follow the progress of KAN in RL you can check the repo [kanrl](https://github.com/riiswa/kanrl).
[![riiswa/kanrl - GitHub](https://gh-card.dev/repos/riiswa/kanrl.svg)](https://github.com/riiswa/kanrl)
"""
envs = ["CartPole-v1", "MountainCar-v0", "Acrobot-v1", "Pendulum-v1", "MountainCarContinuous-v0", "LunarLander-v2", "Swimmer-v3", "Hopper-v3", "HalfCheetah-v3", "Walker2d-v3"]
if __name__ == "__main__":
torch.set_default_dtype(torch.float32)
def load_video_and_dataset(_env_name):
env_name = _env_name
agent = "ppo"
if env_name == "Swimmer-v3" or env_name == "Walker2d-v3":
agent ="trpo"
dataset_path, video_path = generate_dataset_from_expert(agent, _env_name, 15, 3)
return video_path, gr.Button("Compute the symbolic policy!", interactive=True), {
"dataset_path": dataset_path,
"ipe": None,
"env_name": env_name
}
def parse_integer_list(input_str):
if not input_str or input_str.isspace():
return None
elements = input_str.split(',')
try:
int_list = tuple([int(elem.strip()) for elem in elements])
return int_list
except ValueError:
return False
def extract_interpretable_policy(kan_widths, epochs, state):
widths = parse_integer_list(kan_widths)
if kan_widths is False:
gr.Warning(f"Please enter widths {kan_widths} in the right format... The current run is executed with no hidden layer.")
widths = None
state["ipe"] = InterpretablePolicyExtractor(state["env_name"], widths)
state["ipe"].train_from_dataset(state["dataset_path"], steps=epochs)
state["ipe"].policy.prune()
state["ipe"].policy.plot(mask=True, scale=5)
fig = plt.gcf()
fig.canvas.draw()
kan_architecture = np.array(fig.canvas.renderer.buffer_rgba())
plt.close()
return kan_architecture, state, fig
def symbolic_policy(state):
lib = ['x', 'x^2', 'x^3', 'x^4', 'exp', 'log', 'sqrt', 'tanh', 'sin', 'abs']
state["ipe"].policy.auto_symbolic(lib=lib)
env = gym.make(state["env_name"], render_mode="rgb_array")
env = RecordVideo(env, video_folder="videos", episode_trigger=lambda x: True, name_prefix=f"""kan-{state["env_name"]}""")
rollouts(env, state["ipe"].forward, 2)
video_path = os.path.join("videos", f"""kan-{state["env_name"]}.mp4""")
video_files = glob.glob(os.path.join("videos", f"""kan-{state["env_name"]}-episode*.mp4"""))
clips = [VideoFileClip(file) for file in video_files]
final_clip = concatenate_videoclips(clips)
final_clip.write_videofile(video_path, codec="libx264", fps=24)
symbolic_formula = f"### The symbolic formula of the policy is:"
formulas = state["ipe"].policy.symbolic_formula()[0]
for i, formula in enumerate(formulas):
symbolic_formula += "\n$$ a_" + str(i) + "=" + latex(formula) + "$$"
if state["ipe"]._action_is_discrete:
symbolic_formula += "\n" + r"$$ a = \underset{i}{\mathrm{argmax}} \ a_i.$$"
return video_path, symbolic_formula
css = """
#formula {overflow-x: auto!important};
"""
with gr.Blocks(theme='gradio/monochrome', css=css) as app:
state = gr.State({
"dataset_path": None,
"ipe": None,
"env_name": None
})
gr.Markdown(intro)
with gr.Row():
with gr.Column():
gr.Markdown("### Pretrained policy loading (PPO or TRPO from [rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo))")
choice = gr.Dropdown(envs, label="Environment name")
expert_video = gr.Video(label="Expert policy video", interactive=False, autoplay=True)
kan_widths = gr.Textbox(value="2", label="Widths of the hidden layers of the KAN, separated by commas (e.g. `3,3`). Leave empty if there are no hidden layers.")
epochs = gr.Number(value=20, label="KAN training Steps.", minimum=1, maximum=100)
button = gr.Button("Compute the symbolic policy!", interactive=False)
with gr.Column():
gr.Markdown("### Symbolic policy extraction")
kan_architecture = gr.Image(interactive=False, label="KAN architecture")
sym_video = gr.Video(label="Symbolic policy video", interactive=False, autoplay=True)
sym_formula = gr.Markdown(elem_id="formula")
choice.input(load_video_and_dataset, inputs=[choice], outputs=[expert_video, button, state])
button.click(extract_interpretable_policy, inputs=[kan_widths, epochs, state], outputs=[kan_architecture, state]).then(
symbolic_policy, inputs=[state], outputs=[sym_video, sym_formula]
)
app.launch()