Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
from threading import Thread | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
model_id = "rinna/llama-3-youko-8b-instruct" | |
DESCRIPTION = """ | |
<div> | |
<p>🦊 <a href="https://huggingface.co/rinna/llama-3-youko-8b-instruct"><b>Llama 3 Youko 8B Instruct</b> (rinna/llama-3-youko-8b-instruct)</a>は、<a href="https://rinna.co.jp">rinna株式会社</a>が<a href=https://huggingface.co/meta-llama/Meta-Llama-3-8B>Meta Llama 3 8B</a>に日本語継続事前学習およびインストラクションチューニングを行った大規模言語モデルです.Llama 3 8Bの優れたパフォーマンスを日本語に引き継いでおり、日本語のチャットにおいて高い性能を示しています。</p> | |
<p>🤖 このデモでは、Llama 3 Youko 8B Instructとチャットを行うことが可能です。</p> | |
<p>📄 モデルの詳細については、<a href="https://rinna.co.jp/news/2024/07/20240725.html">プレスリリース</a>、および、<a href="https://rinnakk.github.io/research/benchmarks/lm/index.html">ベンチマーク</a>をご覧ください。お問い合わせは<a href="https://rinna.co.jp/inquiry/">こちら</a>までどうぞ。</p> | |
</div> | |
""" | |
LICENSE = """ | |
--- | |
<div> | |
<p>Built with Meta Llama 3</p> | |
<p>License: <a href="https://llama.meta.com/llama3/license/">Meta Llama 3 Community License</a><p> | |
<p>This space is implemented based on <a href="https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b">ysharma/Chat_with_Meta_llama3_8b</a>.</p> | |
</div> | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://huggingface.co/rinna/llama-3-youko-8b/resolve/main/rinna.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Llama 3 Youko</h1> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
""" | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
def chat_llama3_8b(message: str, | |
history: list, | |
temperature: float, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
conversation.append({"role": "system", "content": "あなたは誠実で優秀なアシスタントです。どうか、簡潔かつ正直に答えてください。"}) | |
for user, assistant in history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
# Need to set add_generation_prompt=True to ensure the model generates the response. | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
print(input_ids) | |
print(tokenizer.decode(input_ids.tolist()[0])) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
repetition_penalty=1.1, | |
eos_token_id=terminators, | |
) | |
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
if temperature == 0: | |
generate_kwargs['do_sample'] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ パラメータ", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.9, | |
label="生成時におけるサンプリングの温度(ランダム性)", | |
render=False), | |
gr.Slider(minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="生成したい最大のトークン数", | |
render=False), | |
], | |
examples=[ | |
["日本で有名なものと言えば"], | |
["ネコ: 「お腹が減ったニャ」\nイヌ: 「\nで始まる物語を書いて"], | |
["C言語で素数を判定するコードを書いて"], | |
["人工知能とは何ですか"], | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch() |