Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense, Dropout, Activation | |
# Set up the Streamlit app | |
st.title('Breast Cancer Prediction') | |
# Default parameter values | |
default_values = [17.99, 10.38, 122.8, 1001, 0.1184, 0.2776, 0.3001, 0.1471, 0.2419, 0.07871, | |
1.095, 0.9053, 8.589, 153.4, 0.006399, 0.04904, 0.05373, 0.01587, 0.03003, | |
0.006193, 25.38, 17.33, 184.6, 2019, 0.1622, 0.6656, 0.7119, 0.2654, 0.4601, 0.1189] | |
# Create a DataFrame with default parameter values | |
default_data = pd.DataFrame([default_values], | |
columns=['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', | |
'smoothness_mean', 'compactness_mean', 'concavity_mean', | |
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', | |
'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', | |
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', | |
'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst', | |
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', | |
'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst']) | |
# Display the input form with default values | |
st.subheader('Input Parameters') | |
user_input = st.form(key='user_input_form') | |
input_data = user_input.dataframe(default_data) | |
# Implementing ANN | |
ann_model = Sequential() | |
ann_model.add(Dense(16, input_dim=30, activation='relu')) | |
ann_model.add(Dropout(0.2)) | |
ann_model.add(Dense(1, activation='sigmoid')) | |
# Compiling the model | |
ann_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | |
# Load the saved model weights | |
ann_model.load_weights('model_weights.h5') | |
# Make predictions when the 'Predict' button is clicked | |
if user_input.form_submit_button('Predict'): | |
prediction = ann_model.predict(input_data) | |
prediction_label = 'Malignant' if prediction[0] >= 0.5 else 'Benign' | |
st.subheader('Prediction') | |
st.write(f'The lesion is predicted to be: {prediction_label}') | |