rishabh5752's picture
Update app.py
ad887e6
import streamlit as st
import pickle
from PIL import Image
# Load the pretrained model from the pickle file
model_filename = 'model.pkl'
with open(model_filename, 'rb') as file:
model = pickle.load(file)
# Function to make predictions
def predict_pneumonia(image):
# Preprocess the image (you may need to resize or normalize it)
# preprocess_image(image)
# Make predictions using the loaded model
prediction = model.predict(image)
return prediction
# Streamlit app
def main():
# Set app title and layout
st.title("Pneumonia Detection")
st.markdown("---")
# Add an image uploader
st.header("Upload Chest X-ray Image")
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Make prediction when the user clicks the 'Predict' button
if st.button("Predict"):
# Perform prediction
prediction = predict_pneumonia(image)
# Display the prediction
if prediction == 1:
st.error("Prediction: Pneumonia detected")
else:
st.success("Prediction: No pneumonia detected")
# Run the app
if __name__ == '__main__':
main()