File size: 5,216 Bytes
0c1bd79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from typing import Tuple, Dict
import requests
import random
import numpy as np
import gradio as gr
import torch
from PIL import Image
from diffusers import StableDiffusionInpaintPipeline

INFO = """
# FLUX-Based Inpainting 🎨

This interface utilizes a FLUX model variant for precise inpainting. Special thanks to the [Black Forest Labs](https://huggingface.co/black-forest-labs) team 
and [Gothos](https://github.com/Gothos) for contributing to this advanced solution.
"""

# Constants
MAX_SEED_VALUE = np.iinfo(np.int32).max
TARGET_DIM = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Function to clear background
def clear_background(image: Image.Image, threshold: int = 50) -> Image.Image:
    image = image.convert("RGBA")
    pixels = image.getdata()
    processed_data = [
        (0, 0, 0, 0) if sum(pixel[:3]) / 3 < threshold else pixel for pixel in pixels
    ]
    image.putdata(processed_data)
    return image

# Sample data examples
EXAMPLES = [
    [
        {
            "background": Image.open(requests.get("https://example.com/doge-1.png", stream=True).raw),
            "layers": [clear_background(Image.open(requests.get("https://example.com/mask-1.png", stream=True).raw))],
            "composite": Image.open(requests.get("https://example.com/composite-1.png", stream=True).raw),
        },
        "desert mirage",
        42,
        False,
        0.75,
        25
    ],
    [
        {
            "background": Image.open(requests.get("https://example.com/doge-2.png", stream=True).raw),
            "layers": [clear_background(Image.open(requests.get("https://example.com/mask-2.png", stream=True).raw))],
            "composite": Image.open(requests.get("https://example.com/composite-2.png", stream=True).raw),
        },
        "neon city",
        100,
        True,
        0.9,
        35
    ]
]

# Load model
inpainting_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)

# Utility to adjust image size
def get_scaled_dimensions(
    original_size: Tuple[int, int], max_dim: int = TARGET_DIM
) -> Tuple[int, int]:
    width, height = original_size
    scaling_factor = max_dim / max(width, height)
    return (int(width * scaling_factor) // 32 * 32, int(height * scaling_factor) // 32 * 32)

@spaces.GPU(duration=100)
def generate_inpainting(
    input_data: Dict,
    prompt_text: str,
    chosen_seed: int,
    use_random_seed: bool,
    inpainting_strength: float,
    steps: int,
    progress=gr.Progress(track_tqdm=True)
):
    if not prompt_text:
        return gr.Info("Provide a prompt to proceed."), None

    background = input_data.get("background")
    mask_layer = input_data.get("layers")[0]

    if not background:
        return gr.Info("Background image is missing."), None

    if not mask_layer:
        return gr.Info("Mask layer is missing."), None

    new_width, new_height = get_scaled_dimensions(background.size)
    resized_background = background.resize((new_width, new_height), Image.LANCZOS)
    resized_mask = mask_layer.resize((new_width, new_height), Image.LANCZOS)

    if use_random_seed:
        chosen_seed = random.randint(0, MAX_SEED_VALUE)

    torch.manual_seed(chosen_seed)
    generated_image = inpainting_pipeline(
        prompt=prompt_text,
        image=resized_background,
        mask_image=resized_mask,
        strength=inpainting_strength,
        num_inference_steps=steps,
    ).images[0]

    return generated_image, resized_mask

# Build the Gradio interface
with gr.Blocks() as flux_app:
    gr.Markdown(INFO)

    with gr.Row():
        with gr.Column():
            image_editor = gr.ImageEditor(
                label="Edit Image",
                type="pil",
                sources=["upload", "webcam"],
                brush=gr.Brush(colors=["#FFF"], color_mode="fixed")
            )

            prompt_box = gr.Text(
                label="Inpainting Prompt", placeholder="Describe the change you'd like."
            )
            run_button = gr.Button(value="Run Inpainting")

            with gr.Accordion("Settings"):
                seed_slider = gr.Slider(0, MAX_SEED_VALUE, step=1, value=42, label="Seed")
                random_seed_toggle = gr.Checkbox(label="Randomize Seed", value=True)
                inpainting_strength_slider = gr.Slider(0.0, 1.0, step=0.01, value=0.85, label="Inpainting Strength")
                steps_slider = gr.Slider(1, 50, step=1, value=25, label="Inference Steps")

        with gr.Column():
            output_image = gr.Image(label="Output Image")
            output_mask = gr.Image(label="Processed Mask")
            
    run_button.click(
        generate_inpainting,
        inputs=[image_editor, prompt_box, seed_slider, random_seed_toggle, inpainting_strength_slider, steps_slider],
        outputs=[output_image, output_mask]
    )

    gr.Examples(
        examples=EXAMPLES,
        fn=generate_inpainting,
        inputs=[image_editor, prompt_box, seed_slider, random_seed_toggle, inpainting_strength_slider, steps_slider],
        outputs=[output_image, output_mask],
        run_on_click=True,
    )

flux_app.launch(debug=False, show_error=True)