Spaces:
Runtime error
Runtime error
File size: 7,954 Bytes
f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 0c1bd79 f41d814 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from typing import Tuple
import requests
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image, UnidentifiedImageError
from diffusers import FluxInpaintPipeline
MARKDOWN = """
# FLUX.1 Inpainting 🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
image = image.convert("RGBA")
data = image.getdata()
new_data = []
for item in data:
avg = sum(item[:3]) / 3
if avg < threshold:
new_data.append((0, 0, 0, 0))
else:
new_data.append(item)
image.putdata(new_data)
return image
def load_image(url: str) -> Image.Image:
try:
response = requests.get(url, stream=True)
response.raise_for_status() # Raise an HTTPError for bad responses
image = Image.open(BytesIO(response.content))
return image
except requests.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
return None
except UnidentifiedImageError:
print("Cannot identify image file")
return None
except Exception as err:
print(f"Other error occurred: {err}")
return None
EXAMPLES = [
[
{
"background": load_image("https://media.roboflow.com/spaces/doge-2-image.png"),
"layers": [remove_background(load_image("https://media.roboflow.com/spaces/doge-2-mask-2.png"))],
"composite": load_image("https://media.roboflow.com/spaces/doge-2-composite-2.png"),
},
"little lion",
42,
False,
0.85,
30
],
[
{
"background": load_image("https://media.roboflow.com/spaces/doge-2-image.png"),
"layers": [remove_background(load_image("https://media.roboflow.com/spaces/doge-2-mask-3.png"))],
"composite": load_image("https://media.roboflow.com/spaces/doge-2-composite-3.png"),
},
"tribal tattoos",
42,
False,
0.85,
30
]
]
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
@spaces.GPU(duration=100)
def process(
input_image_editor: dict,
input_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
progress=gr.Progress(track_tqdm=True)
):
if not input_text:
return None, None, "Please enter a text prompt."
image = input_image_editor.get('background')
mask = input_image_editor.get('layers', [None])[0]
if not image:
return None, None, "Please upload an image."
if not mask:
return None, None, "Please draw a mask on the image."
width, height = resize_image_dimensions(original_resolution_wh=image.size)
resized_image = image.resize((width, height), Image.LANCZOS)
resized_mask = mask.resize((width, height), Image.LANCZOS)
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
result = pipe(
prompt=input_text,
image=resized_image,
mask_image=resized_mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider
).images[0]
return result, resized_mask, None
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
with gr.Row():
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
submit_button_component = gr.Button(
value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image', format="png")
with gr.Accordion("Debug", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask', format="png")
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[
input_image_editor_component,
input_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
],
run_on_click=True,
cache_examples=True
)
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
input_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
]
)
demo.launch(debug=False, show_error=True)
|