File size: 6,343 Bytes
ca30234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import cv2
import spaces
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
import requests
import json
import time

# Add a new function for text-to-image generation
def generate_garment_image(prompt):
    # This is a placeholder function. You'll need to implement actual text-to-image generation here.
    # For example, you might use a service like DALL-E, Stable Diffusion, or any other text-to-image model.
    # For now, we'll just return a placeholder image.
    placeholder_image = np.zeros((256, 256, 3), dtype=np.uint8)
    cv2.putText(placeholder_image, prompt, (10, 128), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
    return placeholder_image

def tryon(person_img, garment_prompt, seed, randomize_seed):
    post_start_time = time.time()
    if person_img is None or garment_prompt == "":
        return None, None, "Empty image or prompt"
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Generate garment image from prompt
    garment_img = generate_garment_image(garment_prompt)
    
    encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
    encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')

    # Rest of the function remains the same
    # ...

def start_tryon(person_img, garment_prompt, seed, randomize_seed):
    start_time = time.time()
    if person_img is None or garment_prompt == "":
        return None, None, "Empty image or prompt"
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Generate garment image from prompt
    garment_img = generate_garment_image(garment_prompt)
    
    encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
    encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
    encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')

    # Rest of the function remains the same
    # ...

MAX_SEED = 999999

example_path = os.path.join(os.path.dirname(__file__), 'assets')

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

css="""
#col-left {
    margin: 0 auto;
    max-width: 430px;
}
#col-mid {
    margin: 0 auto;
    max-width: 430px;
}
#col-right {
    margin: 0 auto;
    max-width: 430px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 1.  Upload a person image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-mid"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 2. Enter a garment description ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id = "col-right"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 3. Press "Run" to get try-on results
                </div>
            </div>
            """)
    with gr.Row():
        with gr.Column(elem_id = "col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=12,
                examples=human_list_path
            )
        with gr.Column(elem_id = "col-mid"):
            garm_prompt = gr.Textbox(label="Garment description", placeholder="Enter a description of the garment...")
            example_prompts = gr.Examples(
                inputs=garm_prompt,
                examples=["A red t-shirt", "Blue jeans", "A floral summer dress", "A black leather jacket"]
            )
        with gr.Column(elem_id = "col-right"):
            image_out = gr.Image(label="Result", show_share_button=False)
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Random seed", value=True)
            with gr.Row():
                seed_used = gr.Number(label="Seed used")
                result_info = gr.Text(label="Response")
            test_button = gr.Button(value="Run", elem_id="button")

    test_button.click(fn=tryon, inputs=[imgs, garm_prompt, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon', concurrency_limit=40)

    with gr.Column(elem_id = "col-showcase"):
        gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
            <div> </div>
            <br>
            <div>
            Virtual try-on examples in pairs of person images and garment descriptions
            </div>
        </div>
        """)
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model2.png", "A blue t-shirt", "assets/examples/result2.png"],
                ["assets/examples/model3.png", "A red dress", "assets/examples/result3.png"],
                ["assets/examples/model1.png", "A black suit", "assets/examples/result1.png"],
            ],
            inputs=[imgs, garm_prompt, image_out],
            label=None
        )

Tryon.launch()