import os import cv2 import spaces from PIL import Image import gradio as gr import numpy as np import random import base64 import requests import json import time # Add a new function for text-to-image generation def generate_garment_image(prompt): # This is a placeholder function. You'll need to implement actual text-to-image generation here. # For example, you might use a service like DALL-E, Stable Diffusion, or any other text-to-image model. # For now, we'll just return a placeholder image. placeholder_image = np.zeros((256, 256, 3), dtype=np.uint8) cv2.putText(placeholder_image, prompt, (10, 128), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) return placeholder_image def tryon(person_img, garment_prompt, seed, randomize_seed): post_start_time = time.time() if person_img is None or garment_prompt == "": return None, None, "Empty image or prompt" if randomize_seed: seed = random.randint(0, MAX_SEED) # Generate garment image from prompt garment_img = generate_garment_image(garment_prompt) encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes() encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8') encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes() encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8') # Rest of the function remains the same # ... def start_tryon(person_img, garment_prompt, seed, randomize_seed): start_time = time.time() if person_img is None or garment_prompt == "": return None, None, "Empty image or prompt" if randomize_seed: seed = random.randint(0, MAX_SEED) # Generate garment image from prompt garment_img = generate_garment_image(garment_prompt) encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes() encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8') encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes() encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8') # Rest of the function remains the same # ... MAX_SEED = 999999 example_path = os.path.join(os.path.dirname(__file__), 'assets') human_list = os.listdir(os.path.join(example_path,"human")) human_list_path = [os.path.join(example_path,"human",human) for human in human_list] css=""" #col-left { margin: 0 auto; max-width: 430px; } #col-mid { margin: 0 auto; max-width: 430px; } #col-right { margin: 0 auto; max-width: 430px; } #col-showcase { margin: 0 auto; max-width: 1100px; } #button { color: blue; } """ def load_description(fp): with open(fp, 'r', encoding='utf-8') as f: content = f.read() return content with gr.Blocks(css=css) as Tryon: gr.HTML(load_description("assets/title.md")) with gr.Row(): with gr.Column(elem_id = "col-left"): gr.HTML("""