Spaces:
Runtime error
Runtime error
import math | |
import scipy | |
import numpy as np | |
from scipy.ndimage import grey_dilation, grey_erosion | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
__all__ = [ | |
'supervised_training_iter', | |
'soc_adaptation_iter', | |
] | |
# ---------------------------------------------------------------------------------- | |
# Tool Classes/Functions | |
# ---------------------------------------------------------------------------------- | |
class GaussianBlurLayer(nn.Module): | |
""" Add Gaussian Blur to a 4D tensors | |
This layer takes a 4D tensor of {N, C, H, W} as input. | |
The Gaussian blur will be performed in given channel number (C) splitly. | |
""" | |
def __init__(self, channels, kernel_size): | |
""" | |
Arguments: | |
channels (int): Channel for input tensor | |
kernel_size (int): Size of the kernel used in blurring | |
""" | |
super(GaussianBlurLayer, self).__init__() | |
self.channels = channels | |
self.kernel_size = kernel_size | |
assert self.kernel_size % 2 != 0 | |
self.op = nn.Sequential( | |
nn.ReflectionPad2d(math.floor(self.kernel_size / 2)), | |
nn.Conv2d(channels, channels, self.kernel_size, | |
stride=1, padding=0, bias=None, groups=channels) | |
) | |
self._init_kernel() | |
def forward(self, x): | |
""" | |
Arguments: | |
x (torch.Tensor): input 4D tensor | |
Returns: | |
torch.Tensor: Blurred version of the input | |
""" | |
if not len(list(x.shape)) == 4: | |
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n') | |
exit() | |
elif not x.shape[1] == self.channels: | |
print('In \'GaussianBlurLayer\', the required channel ({0}) is' | |
'not the same as input ({1})\n'.format(self.channels, x.shape[1])) | |
exit() | |
return self.op(x) | |
def _init_kernel(self): | |
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8 | |
n = np.zeros((self.kernel_size, self.kernel_size)) | |
i = math.floor(self.kernel_size / 2) | |
n[i, i] = 1 | |
kernel = scipy.ndimage.gaussian_filter(n, sigma) | |
for name, param in self.named_parameters(): | |
param.data.copy_(torch.from_numpy(kernel)) | |
# ---------------------------------------------------------------------------------- | |
# ---------------------------------------------------------------------------------- | |
# MODNet Training Functions | |
# ---------------------------------------------------------------------------------- | |
blurer = GaussianBlurLayer(1, 3).cuda() | |
def supervised_training_iter( | |
modnet, optimizer, image, trimap, gt_matte, | |
semantic_scale=10.0, detail_scale=10.0, matte_scale=1.0): | |
""" Supervised training iteration of MODNet | |
This function trains MODNet for one iteration in a labeled dataset. | |
Arguments: | |
modnet (torch.nn.Module): instance of MODNet | |
optimizer (torch.optim.Optimizer): optimizer for supervised training | |
image (torch.autograd.Variable): input RGB image | |
its pixel values should be normalized | |
trimap (torch.autograd.Variable): trimap used to calculate the losses | |
its pixel values can be 0, 0.5, or 1 | |
(foreground=1, background=0, unknown=0.5) | |
gt_matte (torch.autograd.Variable): ground truth alpha matte | |
its pixel values are between [0, 1] | |
semantic_scale (float): scale of the semantic loss | |
NOTE: please adjust according to your dataset | |
detail_scale (float): scale of the detail loss | |
NOTE: please adjust according to your dataset | |
matte_scale (float): scale of the matte loss | |
NOTE: please adjust according to your dataset | |
Returns: | |
semantic_loss (torch.Tensor): loss of the semantic estimation [Low-Resolution (LR) Branch] | |
detail_loss (torch.Tensor): loss of the detail prediction [High-Resolution (HR) Branch] | |
matte_loss (torch.Tensor): loss of the semantic-detail fusion [Fusion Branch] | |
Example: | |
import torch | |
from src.models.modnet import MODNet | |
from src.trainer import supervised_training_iter | |
bs = 16 # batch size | |
lr = 0.01 # learn rate | |
epochs = 40 # total epochs | |
modnet = torch.nn.DataParallel(MODNet()).cuda() | |
optimizer = torch.optim.SGD(modnet.parameters(), lr=lr, momentum=0.9) | |
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=int(0.25 * epochs), gamma=0.1) | |
dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function | |
for epoch in range(0, epochs): | |
for idx, (image, trimap, gt_matte) in enumerate(dataloader): | |
semantic_loss, detail_loss, matte_loss = \ | |
supervised_training_iter(modnet, optimizer, image, trimap, gt_matte) | |
lr_scheduler.step() | |
""" | |
global blurer | |
# set the model to train mode and clear the optimizer | |
modnet.train() | |
optimizer.zero_grad() | |
# forward the model | |
pred_semantic, pred_detail, pred_matte = modnet(image, False) | |
# calculate the boundary mask from the trimap | |
boundaries = (trimap < 0.5) + (trimap > 0.5) | |
# calculate the semantic loss | |
gt_semantic = F.interpolate(gt_matte, scale_factor=1/16, mode='bilinear') | |
gt_semantic = blurer(gt_semantic) | |
semantic_loss = torch.mean(F.mse_loss(pred_semantic, gt_semantic)) | |
semantic_loss = semantic_scale * semantic_loss | |
# calculate the detail loss | |
pred_boundary_detail = torch.where(boundaries, trimap, pred_detail) | |
gt_detail = torch.where(boundaries, trimap, gt_matte) | |
detail_loss = torch.mean(F.l1_loss(pred_boundary_detail, gt_detail)) | |
detail_loss = detail_scale * detail_loss | |
# calculate the matte loss | |
pred_boundary_matte = torch.where(boundaries, trimap, pred_matte) | |
matte_l1_loss = F.l1_loss(pred_matte, gt_matte) + 4.0 * F.l1_loss(pred_boundary_matte, gt_matte) | |
matte_compositional_loss = F.l1_loss(image * pred_matte, image * gt_matte) \ | |
+ 4.0 * F.l1_loss(image * pred_boundary_matte, image * gt_matte) | |
matte_loss = torch.mean(matte_l1_loss + matte_compositional_loss) | |
matte_loss = matte_scale * matte_loss | |
# calculate the final loss, backward the loss, and update the model | |
loss = semantic_loss + detail_loss + matte_loss | |
loss.backward() | |
optimizer.step() | |
# for test | |
return semantic_loss, detail_loss, matte_loss | |
def soc_adaptation_iter( | |
modnet, backup_modnet, optimizer, image, | |
soc_semantic_scale=100.0, soc_detail_scale=1.0): | |
""" Self-Supervised sub-objective consistency (SOC) adaptation iteration of MODNet | |
This function fine-tunes MODNet for one iteration in an unlabeled dataset. | |
Note that SOC can only fine-tune a converged MODNet, i.e., MODNet that has been | |
trained in a labeled dataset. | |
Arguments: | |
modnet (torch.nn.Module): instance of MODNet | |
backup_modnet (torch.nn.Module): backup of the trained MODNet | |
optimizer (torch.optim.Optimizer): optimizer for self-supervised SOC | |
image (torch.autograd.Variable): input RGB image | |
its pixel values should be normalized | |
soc_semantic_scale (float): scale of the SOC semantic loss | |
NOTE: please adjust according to your dataset | |
soc_detail_scale (float): scale of the SOC detail loss | |
NOTE: please adjust according to your dataset | |
Returns: | |
soc_semantic_loss (torch.Tensor): loss of the semantic SOC | |
soc_detail_loss (torch.Tensor): loss of the detail SOC | |
Example: | |
import copy | |
import torch | |
from src.models.modnet import MODNet | |
from src.trainer import soc_adaptation_iter | |
bs = 1 # batch size | |
lr = 0.00001 # learn rate | |
epochs = 10 # total epochs | |
modnet = torch.nn.DataParallel(MODNet()).cuda() | |
modnet = LOAD_TRAINED_CKPT() # NOTE: please finish this function | |
optimizer = torch.optim.Adam(modnet.parameters(), lr=lr, betas=(0.9, 0.99)) | |
dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function | |
for epoch in range(0, epochs): | |
backup_modnet = copy.deepcopy(modnet) | |
for idx, (image) in enumerate(dataloader): | |
soc_semantic_loss, soc_detail_loss = \ | |
soc_adaptation_iter(modnet, backup_modnet, optimizer, image) | |
""" | |
global blurer | |
# set the backup model to eval mode | |
backup_modnet.eval() | |
# set the main model to train mode and freeze its norm layers | |
modnet.train() | |
modnet.module.freeze_norm() | |
# clear the optimizer | |
optimizer.zero_grad() | |
# forward the main model | |
pred_semantic, pred_detail, pred_matte = modnet(image, False) | |
# forward the backup model | |
with torch.no_grad(): | |
_, pred_backup_detail, pred_backup_matte = backup_modnet(image, False) | |
# calculate the boundary mask from `pred_matte` and `pred_semantic` | |
pred_matte_fg = (pred_matte.detach() > 0.1).float() | |
pred_semantic_fg = (pred_semantic.detach() > 0.1).float() | |
pred_semantic_fg = F.interpolate(pred_semantic_fg, scale_factor=16, mode='bilinear') | |
pred_fg = pred_matte_fg * pred_semantic_fg | |
n, c, h, w = pred_matte.shape | |
np_pred_fg = pred_fg.data.cpu().numpy() | |
np_boundaries = np.zeros([n, c, h, w]) | |
for sdx in range(0, n): | |
sample_np_boundaries = np_boundaries[sdx, 0, ...] | |
sample_np_pred_fg = np_pred_fg[sdx, 0, ...] | |
side = int((h + w) / 2 * 0.05) | |
dilated = grey_dilation(sample_np_pred_fg, size=(side, side)) | |
eroded = grey_erosion(sample_np_pred_fg, size=(side, side)) | |
sample_np_boundaries[np.where(dilated - eroded != 0)] = 1 | |
np_boundaries[sdx, 0, ...] = sample_np_boundaries | |
boundaries = torch.tensor(np_boundaries).float().cuda() | |
# sub-objectives consistency between `pred_semantic` and `pred_matte` | |
# generate pseudo ground truth for `pred_semantic` | |
downsampled_pred_matte = blurer(F.interpolate(pred_matte, scale_factor=1/16, mode='bilinear')) | |
pseudo_gt_semantic = downsampled_pred_matte.detach() | |
pseudo_gt_semantic = pseudo_gt_semantic * (pseudo_gt_semantic > 0.01).float() | |
# generate pseudo ground truth for `pred_matte` | |
pseudo_gt_matte = pred_semantic.detach() | |
pseudo_gt_matte = pseudo_gt_matte * (pseudo_gt_matte > 0.01).float() | |
# calculate the SOC semantic loss | |
soc_semantic_loss = F.mse_loss(pred_semantic, pseudo_gt_semantic) + F.mse_loss(downsampled_pred_matte, pseudo_gt_matte) | |
soc_semantic_loss = soc_semantic_scale * torch.mean(soc_semantic_loss) | |
# NOTE: using the formulas in our paper to calculate the following losses has similar results | |
# sub-objectives consistency between `pred_detail` and `pred_backup_detail` (on boundaries only) | |
backup_detail_loss = boundaries * F.l1_loss(pred_detail, pred_backup_detail, reduction='none') | |
backup_detail_loss = torch.sum(backup_detail_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3)) | |
backup_detail_loss = torch.mean(backup_detail_loss) | |
# sub-objectives consistency between pred_matte` and `pred_backup_matte` (on boundaries only) | |
backup_matte_loss = boundaries * F.l1_loss(pred_matte, pred_backup_matte, reduction='none') | |
backup_matte_loss = torch.sum(backup_matte_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3)) | |
backup_matte_loss = torch.mean(backup_matte_loss) | |
soc_detail_loss = soc_detail_scale * (backup_detail_loss + backup_matte_loss) | |
# calculate the final loss, backward the loss, and update the model | |
loss = soc_semantic_loss + soc_detail_loss | |
loss.backward() | |
optimizer.step() | |
return soc_semantic_loss, soc_detail_loss | |
# ---------------------------------------------------------------------------------- | |