Spaces:
Runtime error
Runtime error
""" This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch""" | |
import math | |
import json | |
from functools import reduce | |
import torch | |
from torch import nn | |
#------------------------------------------------------------------------------ | |
# Useful functions | |
#------------------------------------------------------------------------------ | |
def _make_divisible(v, divisor, min_value=None): | |
if min_value is None: | |
min_value = divisor | |
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_v < 0.9 * v: | |
new_v += divisor | |
return new_v | |
def conv_bn(inp, oup, stride): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), | |
nn.BatchNorm2d(oup), | |
nn.ReLU6(inplace=True) | |
) | |
def conv_1x1_bn(inp, oup): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), | |
nn.BatchNorm2d(oup), | |
nn.ReLU6(inplace=True) | |
) | |
#------------------------------------------------------------------------------ | |
# Class of Inverted Residual block | |
#------------------------------------------------------------------------------ | |
class InvertedResidual(nn.Module): | |
def __init__(self, inp, oup, stride, expansion, dilation=1): | |
super(InvertedResidual, self).__init__() | |
self.stride = stride | |
assert stride in [1, 2] | |
hidden_dim = round(inp * expansion) | |
self.use_res_connect = self.stride == 1 and inp == oup | |
if expansion == 1: | |
self.conv = nn.Sequential( | |
# dw | |
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False), | |
nn.BatchNorm2d(hidden_dim), | |
nn.ReLU6(inplace=True), | |
# pw-linear | |
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
nn.BatchNorm2d(oup), | |
) | |
else: | |
self.conv = nn.Sequential( | |
# pw | |
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), | |
nn.BatchNorm2d(hidden_dim), | |
nn.ReLU6(inplace=True), | |
# dw | |
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False), | |
nn.BatchNorm2d(hidden_dim), | |
nn.ReLU6(inplace=True), | |
# pw-linear | |
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
nn.BatchNorm2d(oup), | |
) | |
def forward(self, x): | |
if self.use_res_connect: | |
return x + self.conv(x) | |
else: | |
return self.conv(x) | |
#------------------------------------------------------------------------------ | |
# Class of MobileNetV2 | |
#------------------------------------------------------------------------------ | |
class MobileNetV2(nn.Module): | |
def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000): | |
super(MobileNetV2, self).__init__() | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
input_channel = 32 | |
last_channel = 1280 | |
interverted_residual_setting = [ | |
# t, c, n, s | |
[1 , 16, 1, 1], | |
[expansion, 24, 2, 2], | |
[expansion, 32, 3, 2], | |
[expansion, 64, 4, 2], | |
[expansion, 96, 3, 1], | |
[expansion, 160, 3, 2], | |
[expansion, 320, 1, 1], | |
] | |
# building first layer | |
input_channel = _make_divisible(input_channel*alpha, 8) | |
self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel | |
self.features = [conv_bn(self.in_channels, input_channel, 2)] | |
# building inverted residual blocks | |
for t, c, n, s in interverted_residual_setting: | |
output_channel = _make_divisible(int(c*alpha), 8) | |
for i in range(n): | |
if i == 0: | |
self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t)) | |
else: | |
self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t)) | |
input_channel = output_channel | |
# building last several layers | |
self.features.append(conv_1x1_bn(input_channel, self.last_channel)) | |
# make it nn.Sequential | |
self.features = nn.Sequential(*self.features) | |
# building classifier | |
if self.num_classes is not None: | |
self.classifier = nn.Sequential( | |
nn.Dropout(0.2), | |
nn.Linear(self.last_channel, num_classes), | |
) | |
# Initialize weights | |
self._init_weights() | |
def forward(self, x): | |
# Stage1 | |
x = self.features[0](x) | |
x = self.features[1](x) | |
# Stage2 | |
x = self.features[2](x) | |
x = self.features[3](x) | |
# Stage3 | |
x = self.features[4](x) | |
x = self.features[5](x) | |
x = self.features[6](x) | |
# Stage4 | |
x = self.features[7](x) | |
x = self.features[8](x) | |
x = self.features[9](x) | |
x = self.features[10](x) | |
x = self.features[11](x) | |
x = self.features[12](x) | |
x = self.features[13](x) | |
# Stage5 | |
x = self.features[14](x) | |
x = self.features[15](x) | |
x = self.features[16](x) | |
x = self.features[17](x) | |
x = self.features[18](x) | |
# Classification | |
if self.num_classes is not None: | |
x = x.mean(dim=(2,3)) | |
x = self.classifier(x) | |
# Output | |
return x | |
def _load_pretrained_model(self, pretrained_file): | |
pretrain_dict = torch.load(pretrained_file, map_location='cpu') | |
model_dict = {} | |
state_dict = self.state_dict() | |
print("[MobileNetV2] Loading pretrained model...") | |
for k, v in pretrain_dict.items(): | |
if k in state_dict: | |
model_dict[k] = v | |
else: | |
print(k, "is ignored") | |
state_dict.update(model_dict) | |
self.load_state_dict(state_dict) | |
def _init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
n = m.weight.size(1) | |
m.weight.data.normal_(0, 0.01) | |
m.bias.data.zero_() | |